Noise-Induced Entanglement Transition in One-Dimensional Random Quantum Circuits

被引:0
|
作者
张琦 [1 ]
张广铭 [1 ,2 ]
机构
[1] State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics,Tsinghua University
[2] Frontier Science Center for Quantum Information
关键词
D O I
暂无
中图分类号
O413 [量子论];
学科分类号
070201 ;
摘要
A random quantum circuit is a minimally structured model to study entanglement dynamics of many-body quantum systems.We consider a one-dimensional quantum circuit with noisy Haar-random unitary gates using density matrix operator and tensor contraction methods.It is shown that the entanglement evolution of the random quantum circuits is properly characterized by the logarithmic entanglement negativity.By performing exact numerical calculations,we find that,as the physical error rate is decreased below a critical value pc≈0.056,the logarithmic entanglement negativity changes from the area law to the volume law,giving rise to an entanglement transition.The critical exponent of the correlation length can be determined from the finite-size scaling analysis,revealing the universal dynamic property of the noisy intermediate-scale quantum devices.
引用
收藏
页码:23 / 28
页数:6
相关论文
共 50 条
  • [21] One-dimensional quantum walk with unitary noise
    Shapira, D
    Biham, O
    Bracken, AJ
    Hackett, M
    PHYSICAL REVIEW A, 2003, 68 (06):
  • [22] Quantum entanglement creation based on quantum scattering in one-dimensional waveguides
    Song, Guo-Zhu
    Tao, Ming-Jie
    Qiu, Jing
    Wei, Hai-Rui
    PHYSICAL REVIEW A, 2022, 106 (03)
  • [23] Quantum entanglement and criticality in a one-dimensional deconfined quantum critical point
    Yang, Sheng
    Xu, Jing-Bo
    PHYSICAL REVIEW E, 2021, 104 (06)
  • [24] Measurement-induced criticality and entanglement clusters: A study of one-dimensional and two-dimensional Clifford circuits
    Lunt, Oliver
    Szyniszewski, Marcin
    Pal, Arijeet
    PHYSICAL REVIEW B, 2021, 104 (15)
  • [25] New aspect of noise-induced order in the one-dimensional chaos of the Belousov-Zhabotinsky reaction
    Yoshimoto, M
    Yamaguchi, T
    Nagashima, H
    CHEMICAL PHYSICS LETTERS, 1996, 257 (3-4) : 397 - 400
  • [26] Local entanglement entropy of fermions as a marker of quantum phase transition in the one-dimensional Hubbard model
    Cha, Min-Chul
    Chung, Myung-Hoon
    PHYSICA B-CONDENSED MATTER, 2018, 536 : 701 - 703
  • [27] System Size Dependence of Entanglement in Quantum One-Dimensional Models
    Jakubczyk, D.
    Jakubczyk, P.
    ACTA PHYSICA POLONICA A, 2017, 132 (01) : 158 - 160
  • [29] KINETICS OF A QUANTUM PARTICLE IN A ONE-DIMENSIONAL RANDOM POTENTIAL
    BEREZINSKII, VL
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1973, 65 (03): : 1251 - 1266
  • [30] Noise-Induced Quantum Synchronization
    Schmolke, Finn
    Lutz, Eric
    PHYSICAL REVIEW LETTERS, 2022, 129 (25)