Error estimates of H~1-Galerkin mixed finite element method for Schrdinger equation

被引:0
|
作者
LIU Yang1 LI Hong1 WANG Jin-feng2 1 School of Mathematical Sciences
机构
基金
中国国家自然科学基金;
关键词
H1-Galerkin mixed finite element method; Schrdinger equation; LBB condition; optimal error estimates;
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
070102 ;
摘要
An H1-Galerkin mixed finite element method is discussed for a class of second order Schrdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.
引用
收藏
页码:83 / 89
页数:7
相关论文
共 50 条
  • [31] H1-Galerkin mixed finite element method for the vibration equation of beam with structural damping
    Yuan, Jinhe
    Yin, Zhe
    Zhu, Ailing
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (05):
  • [32] Error estimates for Galerkin finite element methods for the Camassa-Holm equation
    Antonopoulos, D. C.
    Dougalis, V. A.
    Mitsotakis, D. E.
    NUMERISCHE MATHEMATIK, 2019, 142 (04) : 833 - 862
  • [33] Unconditional Optimal Error Estimates of Linearized, Decoupled and Conservative Galerkin FEMs for the Klein–Gordon–Schrödinger Equation
    Yun-Bo Yang
    Yao-Lin Jiang
    Bo-Hao Yu
    Journal of Scientific Computing, 2021, 87
  • [34] Solving unsteady Schr?dinger equation using the improved element-free Galerkin method
    程荣军
    程玉民
    Chinese Physics B, 2016, 25 (02) : 39 - 47
  • [35] High accuracy analysis of the lowest order H 1-Galerkin mixed finite element method for nonlinear sine-Gordon equations
    Shi, Dong-yang
    Wang, Fen-ling
    Zhao, Yan-min
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2017, 33 (03): : 699 - 708
  • [36] Interior energy error estimates for the weak Galerkin finite element method
    Hengguang Li
    Lin Mu
    Xiu Ye
    Numerische Mathematik, 2018, 139 : 447 - 478
  • [37] Interior energy error estimates for the weak Galerkin finite element method
    Li, Hengguang
    Mu, Lin
    Ye, Xiu
    NUMERISCHE MATHEMATIK, 2018, 139 (02) : 447 - 478
  • [38] High Accuracy Analysis of the Lowest Order H~1-Galerkin Mixed Finite Element Method for Nonlinear Sine-Gordon Equations
    Dong-yang SHI
    Fen-ling WANG
    Yan-min ZHAO
    Acta Mathematicae Applicatae Sinica, 2017, 33 (03) : 699 - 708
  • [39] Weak Galerkin mixed finite element method for heat equation
    Zhou, Chenguang
    Zou, Yongkui
    Chai, Shimin
    Zhang, Qian
    Zhu, Hongze
    APPLIED NUMERICAL MATHEMATICS, 2018, 123 : 180 - 199
  • [40] Mixed Discontinuous Galerkin Finite Element Method for the Biharmonic Equation
    Thirupathi Gudi
    Neela Nataraj
    Amiya K. Pani
    Journal of Scientific Computing, 2008, 37 : 139 - 161