Error estimates of H~1-Galerkin mixed finite element method for Schrdinger equation

被引:0
|
作者
LIU Yang1 LI Hong1 WANG Jin-feng2 1 School of Mathematical Sciences
机构
基金
中国国家自然科学基金;
关键词
H1-Galerkin mixed finite element method; Schrdinger equation; LBB condition; optimal error estimates;
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
070102 ;
摘要
An H1-Galerkin mixed finite element method is discussed for a class of second order Schrdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.
引用
收藏
页码:83 / 89
页数:7
相关论文
共 50 条