Error estimates of H~1-Galerkin mixed finite element method for Schrdinger equation

被引:0
|
作者
LIU Yang1 LI Hong1 WANG Jin-feng2 1 School of Mathematical Sciences
机构
基金
中国国家自然科学基金;
关键词
H1-Galerkin mixed finite element method; Schrdinger equation; LBB condition; optimal error estimates;
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
070102 ;
摘要
An H1-Galerkin mixed finite element method is discussed for a class of second order Schrdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.
引用
收藏
页码:83 / 89
页数:7
相关论文
共 50 条
  • [1] Error estimates of H1-Galerkin mixed finite element method for Schrödinger equation
    Yang Liu
    Hong Li
    Jin-feng Wang
    Applied Mathematics-A Journal of Chinese Universities, 2009, 24 : 83 - 89
  • [2] Error estimates of H 1-Galerkin mixed finite element method for Schrodinger equation
    Liu Yang
    Li Hong
    Wang Jin-feng
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2009, 24 (01) : 83 - 89
  • [3] Highly efficient H 1-Galerkin mixed finite element method (MFEM) for parabolic integro-differential equation
    Shi, Dong-yang
    Liao, Xin
    Tang, Qi-li
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2014, 35 (07) : 897 - 912
  • [4] Optimal Error Estimates of SAV Crank–Nicolson Finite Element Method for the Coupled Nonlinear Schrödinger Equation
    Dongfang Li
    Xiaoxi Li
    Hai-wei Sun
    Journal of Scientific Computing, 2023, 97
  • [5] Optimal Error Estimates of SAV Crank-Nicolson Finite Element Method for the Coupled Nonlinear Schrödinger Equation
    Li, Dongfang
    Li, Xiaoxi
    Sun, Hai-wei
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 97 (03)
  • [6] 多维Schrdinger方程H~1-Galerkin混合元数值解法
    刘洋
    王金凤
    李宏
    内蒙古大学学报(自然科学版), 2008, (03) : 246 - 250
  • [7] A posteriori error estimates for H1-Galerkin mixed finite-element method for parabolic problems
    Tripathy, Madhusmita
    Sinha, Rajen Kumar
    APPLICABLE ANALYSIS, 2013, 92 (04) : 855 - 868
  • [8] An H1-Galerkin mixed finite element method for rosenau equation
    Doss, L. Jones Tarcius
    Aishwarya, L.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (03):
  • [9] Galerkin finite element method for nonlinear fractional Schrödinger equations
    Meng Li
    Chengming Huang
    Pengde Wang
    Numerical Algorithms, 2017, 74 : 499 - 525
  • [10] Error Estimates of Finite Difference Methods for the Biharmonic Nonlinear Schrödinger Equation
    Ying Ma
    Teng Zhang
    Journal of Scientific Computing, 2023, 95