A Hierarchy of Integrable Lattice Soliton Equations and New Integrable Symplectic Map

被引:0
|
作者
SUN Ye-Peng CHEN Deng-Yuan Department of Mathematics
机构
基金
中国国家自然科学基金;
关键词
lattice soliton equation; discrete Hamiltonian structure; integrable symplectic map;
D O I
暂无
中图分类号
O175.2 [偏微分方程]; O411.1 [数学物理方法];
学科分类号
0701 ; 070104 ;
摘要
Starting from a discrete spectral problem,a hierarchy of integrable lattice soliton equations is derived.It isshown that the hierarchy is completely integrable in the Liouville sense and possesses discrete bi-Hamiltonian structure.A new integrable symplectic map and finite-dimensional integrable systems are given by nonlinearization method.Thebinary Bargmann constraint gives rise to a B(a|¨)cklund transformation for the resulting integrable lattice equations.Atlast,conservation laws of the hierarchy are presented.
引用
收藏
页码:405 / 410
页数:6
相关论文
共 50 条