A Hierarchy of Integrable Lattice Soliton Equations and New Integrable Symplectic Map

被引:0
|
作者
SUN Ye-Peng CHEN Deng-Yuan Department of Mathematics
机构
基金
中国国家自然科学基金;
关键词
lattice soliton equation; discrete Hamiltonian structure; integrable symplectic map;
D O I
暂无
中图分类号
O175.2 [偏微分方程]; O411.1 [数学物理方法];
学科分类号
0701 ; 070104 ;
摘要
Starting from a discrete spectral problem,a hierarchy of integrable lattice soliton equations is derived.It isshown that the hierarchy is completely integrable in the Liouville sense and possesses discrete bi-Hamiltonian structure.A new integrable symplectic map and finite-dimensional integrable systems are given by nonlinearization method.Thebinary Bargmann constraint gives rise to a B(a|¨)cklund transformation for the resulting integrable lattice equations.Atlast,conservation laws of the hierarchy are presented.
引用
收藏
页码:405 / 410
页数:6
相关论文
共 50 条
  • [21] A hierarchy of integrable nonlinear lattice equations and its two integrable coupling systems
    Ma, Lin-Lin
    Xu, Xi-Xiang
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 203 (01) : 7 - 13
  • [22] A new integrable symplectic map of Bargmann type
    Zhu, Junyi
    Geng, Xianguo
    ACTA PHYSICA POLONICA B, 2008, 39 (08): : 1783 - 1794
  • [23] A new integrable symplectic map of Neumann type
    Wu, YT
    Geng, XG
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1999, 68 (03) : 784 - 790
  • [24] A New Integrable Lattice Hierarchy and Its Two Discrete Integrable Couplings
    DONG Huan-He~1 SONG Ming~(1
    CommunicationsinTheoreticalPhysics, 2008, 49 (05) : 1114 - 1118
  • [25] A NEW INTEGRABLE LATTICE HIERARCHY AND ITS TWO DISCRETE INTEGRABLE COUPLINGS
    Li, Ling
    Dong, Huanhe
    MODERN PHYSICS LETTERS B, 2008, 22 (24): : 2411 - 2419
  • [26] A new integrable lattice hierarchy and its two discrete integrable couplings
    Dong Huan-He
    Song Ming
    Wang Xue-Lei
    Li Jian-Jun
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 49 (05) : 1114 - 1118
  • [27] Integrable decomposition of a hierarchy of soliton equations and integrable coupling system by semidirect sums of Lie algebras
    Luo, Lin
    Fan, Engui
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (10) : 3450 - 3461
  • [28] A 2-parameter hierarchy of integrable lattice equations
    Xu, Xi-Xiang
    Cao, Wei-Li
    MODERN PHYSICS LETTERS B, 2008, 22 (14): : 1389 - 1400
  • [29] A generalized integrable lattice hierarchy associated with the Toda and modified Toda lattice equations: Hamiltonian representation, soliton solutions
    Fan, Fang-Cheng
    Wen, Xiao-Yong
    WAVE MOTION, 2021, 103
  • [30] A Complex Integrable Hierarchy and Its Hamiltonian Structure for Integrable Couplings of WKI Soliton Hierarchy
    Yu, Fajun
    Feng, Shuo
    Zhao, Yanyu
    ABSTRACT AND APPLIED ANALYSIS, 2014,