The analyticity of solutions to a class of degenerate elliptic equations

被引:0
|
作者
LI ChunHe School of Mathematical Science
机构
关键词
analyticity; degenerate elliptic equations; weighted norm; weak coerciveness;
D O I
暂无
中图分类号
O175.25 [椭圆型方程];
学科分类号
070104 ;
摘要
In the present paper,the analyticity of solutions to a class of degenerate elliptic equations is obtained.A kind of weighted norms are introduced and under such norms some degenerate elliptic operators are of weak coerciveness.
引用
收藏
页码:2061 / 2068
页数:8
相关论文
共 50 条
  • [21] Regularity of a class of degenerate elliptic equations
    Song, Qiaozhen
    Lu, Ying
    Shen, Jianzhong
    Wang, Lihe
    [J]. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2011, 10 (03) : 645 - 667
  • [22] On the continuity of solutions to degenerate elliptic equations
    Cruz-Uribe, D.
    Di Gironimo, P.
    Sbordone, C.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (06) : 2671 - 2686
  • [23] EXISTENCE OF SOLUTIONS FOR A CLASS OF DEGENERATE ELLIPTIC EQUATIONS IN P(X)-SOBOLEV SPACES
    Aharrouch, Benali
    Boukhrij, Mohamed
    Bennouna, Jaouad
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2018, 51 (02) : 389 - 411
  • [24] Existence and approximation of solutions for a class of degenerate elliptic equations with Neumann boundary condition
    Cavalheiro, Albo Carlos
    [J]. NOTE DI MATEMATICA, 2020, 40 (02): : 63 - 81
  • [25] Regularity of a class of quasilinear degenerate elliptic equations
    Guan, PF
    [J]. ADVANCES IN MATHEMATICS, 1997, 132 (01) : 24 - 45
  • [26] EXISTENCE RESULTS FOR A CLASS OF DEGENERATE ELLIPTIC EQUATIONS
    di Blasio, G.
    Feo, F.
    Posteraro, M. R.
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2008, 21 (3-4) : 387 - 400
  • [27] A priori estimates for a class of degenerate elliptic equations
    de Miranda, L. H.
    Montenegro, M.
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (05): : 1683 - 1699
  • [28] Regularity theorems for a class of degenerate elliptic equations
    Song, Qiaozhen
    Wang, Yan
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2016, (102) : 1 - 14
  • [29] A priori estimates for a class of degenerate elliptic equations
    L. H. de Miranda
    M. Montenegro
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2013, 20 : 1683 - 1699
  • [30] HOLDER ESTIMATES FOR A CLASS OF DEGENERATE ELLIPTIC EQUATIONS
    Song, Qiaozhen
    Wang, Lihe
    Li, Dongsheng
    [J]. ACTA MATHEMATICA SCIENTIA, 2013, 33 (04) : 1202 - 1218