On the maximal eccentric connectivity indices of graphs

被引:0
|
作者
ZHANG Jian-bin [1 ]
LIU Zhong-zhu [2 ]
ZHOU Bo [1 ]
机构
[1] School of Mathematics, South China Normal University
[2] Department of Mathematics, Huizhou University
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Eccentric connectivity index; diameter; distance;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
For a connected simple graph G, the eccentricity ec(v) of a vertex v in G is the distance from v to a vertex farthest from v, and d(v) denotes the degree of a vertex v. The eccentric connectivity index of G, denoted by ξc(G), is defined as v∈V(G)d(v)ec(v). In this paper, we will determine the graphs with maximal eccentric connectivity index among the connected graphs with n vertices and m edges(n ≤ m ≤ n + 4), and propose a conjecture on the graphs with maximal eccentric connectivity index among the connected graphs with n vertices and m edges(m ≥ n + 5).
引用
收藏
页码:374 / 378
页数:5
相关论文
共 50 条
  • [31] The Eccentric Connectivity Index of Some Special Graphs
    Iranmanesh, Mohammad Ali
    Hafezieh, Roghayeh
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2011, 2 (01): : 61 - 65
  • [32] Eccentric Connectivity Index: Extremal Graphs and Values
    Doslic, Tomislav
    Saheli, Mahboubeh
    Vukicevic, Damir
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 1 (02): : 45 - 56
  • [33] On the Difference Between the Eccentric Connectivity Index and Eccentric Distance Sum of Graphs
    Alizadeh, Yaser
    Klavzar, Sandi
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (02) : 1123 - 1134
  • [34] On the Difference Between the Eccentric Connectivity Index and Eccentric Distance Sum of Graphs
    Yaser Alizadeh
    Sandi Klavžar
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 1123 - 1134
  • [35] Status connectivity indices of line graphs
    Ramane, Harishchandra S.
    Talwar, Saroja Y.
    AFRIKA MATEMATIKA, 2021, 32 (7-8) : 1615 - 1627
  • [36] Status connectivity indices of line graphs
    Harishchandra S. Ramane
    Saroja Y. Talwar
    Afrika Matematika, 2021, 32 : 1615 - 1627
  • [37] Relationship between the eccentric connectivity index and Zagreb indices
    Das, Kinkar Ch
    Trinajstic, N.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (04) : 1758 - 1764
  • [38] The relationship between the eccentric connectivity index and Zagreb indices
    Hua, Hongbo
    Das, Kinkar Ch.
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (16-17) : 2480 - 2491
  • [39] Relationship between the eccentric connectivity index and Zagreb indices
    Das, Kinkar Ch.
    Trinajstić, N.
    Computers and Mathematics with Applications, 2011, 62 (04): : 1758 - 1764
  • [40] Molecular graphs with minimal and maximal Randic indices
    Gutman, I
    CROATICA CHEMICA ACTA, 2002, 75 (02) : 357 - 369