On the Difference Between the Eccentric Connectivity Index and Eccentric Distance Sum of Graphs

被引:0
|
作者
Yaser Alizadeh
Sandi Klavžar
机构
[1] Hakim Sabzevari University,Department of Mathematics
[2] University of Ljubljana,Faculty of Mathematics and Physics
[3] University of Maribor,Faculty of Natural Sciences and Mathematics
[4] Institute of Mathematics,undefined
[5] Physics and Mechanics,undefined
关键词
Eccentricity; Eccentric connectivity index; Eccentric distance sum; Tree; 05C12; 05C09; 05C92;
D O I
暂无
中图分类号
学科分类号
摘要
The eccentric connectivity index of a graph G is ξc(G)=∑v∈V(G)ε(v)deg(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi ^c(G) = \sum _{v \in V(G)}\varepsilon (v)\deg (v)$$\end{document}, and the eccentric distance sum is ξd(G)=∑v∈V(G)ε(v)D(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi ^d(G) = \sum _{v \in V(G)}\varepsilon (v)D(v)$$\end{document}, where ε(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon (v)$$\end{document} is the eccentricity of v, and D(v) the sum of distances between v and the other vertices. A lower and an upper bound on ξd(G)-ξc(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi ^d(G) - \xi ^c(G)$$\end{document} is given for an arbitrary graph G. Regular graphs with diameter at most 2 and joins of cocktail-party graphs with complete graphs form the graphs that attain the two equalities, respectively. Sharp lower and upper bounds on ξd(T)-ξc(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi ^d(T) - \xi ^c(T)$$\end{document} are given for arbitrary trees. Sharp lower and upper bounds on ξd(G)+ξc(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi ^d(G)+\xi ^c(G)$$\end{document} for arbitrary graphs G are also given, and a sharp lower bound on ξd(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi ^d(G)$$\end{document} for graphs G with a given radius is proved.
引用
收藏
页码:1123 / 1134
页数:11
相关论文
共 50 条
  • [1] On the Difference Between the Eccentric Connectivity Index and Eccentric Distance Sum of Graphs
    Alizadeh, Yaser
    Klavzar, Sandi
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (02) : 1123 - 1134
  • [2] The difference between the eccentric distance sum and eccentric connectivity index
    Hua, Hongbo
    Wang, Hongzhuan
    Wang, Maolin
    ARS COMBINATORIA, 2019, 144 : 3 - 12
  • [3] On the quotients between the eccentric connectivity index and the eccentric distance sum of graphs with diameter 2
    Hua, Hongbo
    DISCRETE APPLIED MATHEMATICS, 2020, 285 : 297 - 300
  • [4] ECCENTRIC CONNECTIVITY INDEX AND ECCENTRIC DISTANCE SUM OF VICSEK FRACTAL
    Xiao, Yunfeng
    Peng, Junhao
    Gao, Long
    Yuan, Zhenhua
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024,
  • [5] Distance Eccentric Connectivity Index of Graphs
    Alqesmah, Akram
    Saleh, Anwar
    Rangarajan, R.
    Gunes, Aysun Yurttas
    Cangul, Ismail Naci
    KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (01): : 61 - 74
  • [6] ECCENTRIC CONNECTIVITY INDEX AND ECCENTRIC DISTANCE SUM OF SOME GRAPH OPERATIONS
    Eskender, B.
    Vumar, E.
    TRANSACTIONS ON COMBINATORICS, 2013, 2 (01) : 103 - 111
  • [7] On the Adjacent Eccentric Distance Sum Index of Graphs
    Qu, Hui
    Cao, Shujuan
    PLOS ONE, 2015, 10 (06):
  • [8] Eccentric distance sum and adjacent eccentric distance sum index of complement of subgroup graphs of dihedral group
    Abdussakir, A.
    Susanti, E.
    Hidayati, N.
    Ulya, N. M.
    ANNUAL CONFERENCE OF SCIENCE AND TECHNOLOGY, 2019, 1375
  • [9] On the eccentric distance sum of graphs
    Ilic, Aleksandar
    Yu, Guihai
    Feng, Lihua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 381 (02) : 590 - 600
  • [10] Extremal graphs of given parameters with respect to the eccentricity distance sum and the eccentric connectivity index
    Zhang, Huihui
    Li, Shuchao
    Xu, Baogen
    DISCRETE APPLIED MATHEMATICS, 2019, 254 : 204 - 221