On the Difference Between the Eccentric Connectivity Index and Eccentric Distance Sum of Graphs

被引:0
|
作者
Yaser Alizadeh
Sandi Klavžar
机构
[1] Hakim Sabzevari University,Department of Mathematics
[2] University of Ljubljana,Faculty of Mathematics and Physics
[3] University of Maribor,Faculty of Natural Sciences and Mathematics
[4] Institute of Mathematics,undefined
[5] Physics and Mechanics,undefined
关键词
Eccentricity; Eccentric connectivity index; Eccentric distance sum; Tree; 05C12; 05C09; 05C92;
D O I
暂无
中图分类号
学科分类号
摘要
The eccentric connectivity index of a graph G is ξc(G)=∑v∈V(G)ε(v)deg(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi ^c(G) = \sum _{v \in V(G)}\varepsilon (v)\deg (v)$$\end{document}, and the eccentric distance sum is ξd(G)=∑v∈V(G)ε(v)D(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi ^d(G) = \sum _{v \in V(G)}\varepsilon (v)D(v)$$\end{document}, where ε(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon (v)$$\end{document} is the eccentricity of v, and D(v) the sum of distances between v and the other vertices. A lower and an upper bound on ξd(G)-ξc(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi ^d(G) - \xi ^c(G)$$\end{document} is given for an arbitrary graph G. Regular graphs with diameter at most 2 and joins of cocktail-party graphs with complete graphs form the graphs that attain the two equalities, respectively. Sharp lower and upper bounds on ξd(T)-ξc(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi ^d(T) - \xi ^c(T)$$\end{document} are given for arbitrary trees. Sharp lower and upper bounds on ξd(G)+ξc(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi ^d(G)+\xi ^c(G)$$\end{document} for arbitrary graphs G are also given, and a sharp lower bound on ξd(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi ^d(G)$$\end{document} for graphs G with a given radius is proved.
引用
收藏
页码:1123 / 1134
页数:11
相关论文
共 50 条
  • [21] Eccentric connectivity index of bridge graphs
    Mogharrab, M.
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2010, 4 (11): : 1866 - 1867
  • [22] Connectivity, diameter, minimal degree, independence number and the eccentric distance sum of graphs
    Chen, Shuya
    Li, Shuchao
    Wu, Yueyu
    Sun, Lingli
    DISCRETE APPLIED MATHEMATICS, 2018, 247 : 135 - 146
  • [23] On the General Eccentric Distance Sum of Graphs and Trees
    Feyissa, Yetneberk Kuma
    Imran, Muhammad
    Vetrik, Tomas
    Hunde, Natea
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2022, 13 (04): : 239 - 252
  • [24] Bounds on the general eccentric distance sum of graphs
    Feyissa, Yetneberk Kuma
    Vetrik, Tomas
    DISCRETE MATHEMATICS LETTERS, 2022, 10 : 99 - 106
  • [25] On the eccentric distance sum of trees and unicyclic graphs
    Yu, Guihai
    Feng, Lihua
    Ilic, Aleksandar
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 375 (01) : 99 - 107
  • [26] The eccentric distance sum, the Harary index and the degree powers of graphs with given diameter
    Liu, Weijun
    Yu, Guihai
    Qu, Hui
    Ilic, Aleksandar
    ARS COMBINATORIA, 2016, 126 : 269 - 280
  • [27] On the Wiener index and the eccentric distance sum of hypergraphs
    Rodríguez, JA
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2005, 54 (01) : 209 - 220
  • [28] EXTREMAL REGULAR GRAPHS FOR THE ECCENTRIC CONNECTIVITY INDEX
    Morgan, M. J.
    Mukwembi, S.
    Swart, H. C.
    QUAESTIONES MATHEMATICAE, 2014, 37 (03) : 435 - 444
  • [29] On the Eccentric Connectivity Index of Generalized Thorn Graphs
    Venkatakrishnan, Y. B.
    Balachandran, S.
    Kannan, K.
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2015, 38 (02): : 165 - 168
  • [30] On the Eccentric Connectivity Index of Generalized Thorn Graphs
    Y. B. Venkatakrishnan
    S. Balachandran
    K. Kannan
    National Academy Science Letters, 2015, 38 : 165 - 168