PROOF OF HAYMAN'S CONJECTURE ON NORMAL FAMILIES

被引:0
|
作者
李先进
机构
[1] Academia Sinica
[2] Institute of Mathematics
[3] Beijing
关键词
PROOF OF HAYMAN’S CONJECTURE ON NORMAL FAMILIES;
D O I
暂无
中图分类号
学科分类号
摘要
In 1964, Hayman posed the following conjecture. Let a(≠0) and b be two finite complex numbers and suppose n(≥5) be a positive integer. If is a family of meromorphic functions in a domain D and for each f∈ and z∈D, there exists f’(z)—af(z)≠b, then is normal in D. This paper aims at giving a proof of the conjecture.
引用
收藏
页码:596 / 603
页数:8
相关论文
共 50 条
  • [31] A proof of Wright's conjecture
    van den Berg, Jan Bouwe
    Jaquette, Jonathan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (12) : 7412 - 7462
  • [32] A proof of Ringel’s conjecture
    R. Montgomery
    A. Pokrovskiy
    B. Sudakov
    Geometric and Functional Analysis, 2021, 31 : 663 - 720
  • [33] A proof of Higgins's conjecture
    Braun, G
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 70 (02) : 207 - 212
  • [34] A proof of Lukarevski's conjecture
    Nguyen Xuan Tho
    MATHEMATICAL GAZETTE, 2022, 106 (565): : 143 - +
  • [35] A proof of snevily's conjecture
    Arsovski, Bodan
    ISRAEL JOURNAL OF MATHEMATICS, 2011, 182 (01) : 505 - 508
  • [36] A proof of Nogura's conjecture
    Todorcevic, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (12) : 3919 - 3923
  • [37] A PROOF OF MORAN'S CONJECTURE
    刘坤会
    Science China Mathematics, 1984, (08) : 812 - 830
  • [38] A PROOF OF RINGEL'S CONJECTURE
    Montgomery, R.
    Pokrovskiy, A.
    Sudakov, B.
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2021, 31 (03) : 663 - 720
  • [39] A Proof of Plotkin's Conjecture
    Lei Yinbin
    Luo Maokang
    FUNDAMENTA INFORMATICAE, 2009, 92 (03) : 301 - 306
  • [40] HAYMAN CONJECTURE ON ZEROS OF MEROMORPHIC FUNCTIONS
    FRANK, G
    MATHEMATISCHE ZEITSCHRIFT, 1976, 149 (01) : 29 - 36