PROOF OF HAYMAN'S CONJECTURE ON NORMAL FAMILIES

被引:0
|
作者
李先进
机构
[1] Academia Sinica
[2] Institute of Mathematics
[3] Beijing
关键词
PROOF OF HAYMAN’S CONJECTURE ON NORMAL FAMILIES;
D O I
暂无
中图分类号
学科分类号
摘要
In 1964, Hayman posed the following conjecture. Let a(≠0) and b be two finite complex numbers and suppose n(≥5) be a positive integer. If is a family of meromorphic functions in a domain D and for each f∈ and z∈D, there exists f’(z)—af(z)≠b, then is normal in D. This paper aims at giving a proof of the conjecture.
引用
收藏
页码:596 / 603
页数:8
相关论文
共 50 条
  • [21] THE PROOF OF LEVIN'S CONJECTURE
    杨恩辉
    Science Bulletin, 1989, (21) : 1761 - 1765
  • [22] A PROOF OF DEJEAN'S CONJECTURE
    Currie, James
    Rampersad, Narad
    MATHEMATICS OF COMPUTATION, 2011, 80 (274) : 1063 - 1070
  • [23] A proof of Subbarao's conjecture
    Radu, Cristian-Silviu
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 672 : 161 - 175
  • [24] A proof of Kirillov's conjecture
    Baruch, EM
    ANNALS OF MATHEMATICS, 2003, 158 (01) : 207 - 252
  • [25] Proof of Serban's conjecture
    Bergere, MC
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (01) : 30 - 46
  • [26] PROOF OF A CONJECTURE OF CHOWLA,S
    TIETAVAINEN, A
    JOURNAL OF NUMBER THEORY, 1975, 7 (03) : 353 - 356
  • [27] PROOF OF WANG'S CONJECTURE
    杨义先
    Science Bulletin, 1990, (04) : 350 - 352
  • [28] A proof of snevily’s conjecture
    Bodan Arsovski
    Israel Journal of Mathematics, 2011, 182 : 505 - 508
  • [29] A proof of Onsager's conjecture
    Isett, Philip
    ANNALS OF MATHEMATICS, 2018, 188 (03) : 871 - 963
  • [30] On the Proof of Lin's Conjecture
    Hu, Honggang
    Shao, Shuai
    Gong, Guang
    Helleseth, Tor
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 1822 - 1826