PROOF OF HAYMAN'S CONJECTURE ON NORMAL FAMILIES

被引:0
|
作者
李先进
机构
[1] Academia Sinica
[2] Institute of Mathematics
[3] Beijing
关键词
PROOF OF HAYMAN’S CONJECTURE ON NORMAL FAMILIES;
D O I
暂无
中图分类号
学科分类号
摘要
In 1964, Hayman posed the following conjecture. Let a(≠0) and b be two finite complex numbers and suppose n(≥5) be a positive integer. If is a family of meromorphic functions in a domain D and for each f∈ and z∈D, there exists f’(z)—af(z)≠b, then is normal in D. This paper aims at giving a proof of the conjecture.
引用
收藏
页码:596 / 603
页数:8
相关论文
共 50 条
  • [1] PROOF OF HAYMANS CONJECTURE ON NORMAL-FAMILIES
    LI, XJ
    SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1985, 28 (06): : 596 - 603
  • [2] PROOF OF A CONJECTURE OF HAYMAN CONCERNING F AND F
    LANGLEY, JK
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1993, 48 : 500 - 514
  • [3] A note on Hayman's conjecture
    Ta Thi Hoai An
    Nguyen Viet Phuong
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2020, 31 (06)
  • [4] Normal Families and Shared Functions Concerning Hayman’s Question
    Bingmao Deng
    Chunlin Lei
    Mingliang Fang
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 847 - 857
  • [5] Normal Families and Shared Functions Concerning Hayman's Question
    Deng, Bingmao
    Lei, Chunlin
    Fang, Mingliang
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (03) : 847 - 857
  • [6] Hayman's question on normal families concerning zero numbers
    Deng, Bingmao
    Qiu, Huiling
    Liu, Dan
    Fang, Mingliang
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2014, 59 (05) : 616 - 630
  • [7] On a Conjecture of Hayman
    华歆厚
    庄圻泰
    ActaMathematicaSinica, 1991, (02) : 119 - 126
  • [8] On a Conjecture of Hayman
    华歆厚
    庄圻泰
    Acta Mathematica Sinica,English Series, 1991, (02) : 119 - 126
  • [9] Proof of Halin's normal spanning tree conjecture
    Pitz, Max
    ISRAEL JOURNAL OF MATHEMATICS, 2021, 246 (01) : 353 - 370
  • [10] Proof of Halin’s normal spanning tree conjecture
    Max Pitz
    Israel Journal of Mathematics, 2021, 246 : 353 - 370