Binding Numbers for Fractional ID-k-factor-critical Graphs

被引:0
|
作者
Si Zhong ZHOU [1 ]
机构
[1] School of Mathematics and Physics,Jiangsu University of Science and Technology
基金
中国国家自然科学基金;
关键词
Graph; binding number; independent set; fractionalk-factor; fractional ID-k-factor-criti-cal;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
LetG be a graph,and k≥2 be a positive integer.A graph G is fractional independentset-deletable k-factor-critical(in short,fractional ID-k-factor-critical),if G I has a fractional k-factor for every independent set I of G.The binding number bind(G)of a graph G is defined as bind(G)=min|NG(X)||X|:=X V(G),NG(X)=V(G).In this paper,it is proved that a graph G is fractional ID-k-factor-critical if n≥6k 9 and bind(G)>(3k 1)(n 1)kn 2k+2.
引用
收藏
页码:181 / 186
页数:6
相关论文
共 50 条
  • [31] A NEIGHBORHOOD CONDITION FOR FRACTIONAL ID-[A, B]-FACTOR-CRITICAL GRAPHS
    Zhou, Sizhong
    Yang, Fan
    Sun, Zhiren
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2016, 36 (02) : 409 - 418
  • [32] REMARKS ON FRACTIONAL ID-[a,b]-FACTOR-CRITICAL COVERED NETWORK GRAPHS
    Wang, Sufang
    Zhang, Wei
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2021, 22 (03): : 209 - 216
  • [33] A Neighborhood Union Condition for Fractional ID-[a, b]-factor-critical Graphs
    Yuan, Yuan
    Hao, Rong-Xia
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (04): : 775 - 781
  • [34] A sufficient condition for fractional ID-[a, b]-factor-critical covered graphs
    Jiang, Jiashang
    UTILITAS MATHEMATICA, 2020, 114 : 173 - 179
  • [35] A MINIMUM DEGREE CONDITION FOR FRACTIONAL ID-[a, b]-FACTOR-CRITICAL GRAPHS
    Zhou, Sizhong
    Sun, Zhiren
    Liu, Hongxia
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 86 (02) : 177 - 183
  • [36] A Neighborhood Union Condition for Fractional ID-[a, b]-factor-critical Graphs
    Yuan YUAN
    Rong-Xia HAO
    Acta Mathematicae Applicatae Sinica, 2018, 34 (04) : 775 - 781
  • [37] A Neighborhood Union Condition for Fractional ID-[a, b]-factor-critical Graphs
    Yuan Yuan
    Rong-Xia Hao
    Acta Mathematicae Applicatae Sinica, English Series, 2018, 34 : 775 - 781
  • [38] Sharp conditions on fractional ID-(g, f)-factor-critical covered graphs
    Liu, Hongxia
    RAIRO-OPERATIONS RESEARCH, 2022, 56 (05) : 3257 - 3265
  • [39] An existence theorem on fractional ID-(g, f)-factor-critical covered graphs
    Jiang, Jiashang
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (01) : 31 - 35
  • [40] Binding numbers and fractional (g, f)-deleted graphs
    Zhou, Sizhong
    UTILITAS MATHEMATICA, 2014, 93 : 305 - 314