Binding Numbers for Fractional ID-k-factor-critical Graphs

被引:0
|
作者
Si Zhong ZHOU [1 ]
机构
[1] School of Mathematics and Physics,Jiangsu University of Science and Technology
基金
中国国家自然科学基金;
关键词
Graph; binding number; independent set; fractionalk-factor; fractional ID-k-factor-criti-cal;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
LetG be a graph,and k≥2 be a positive integer.A graph G is fractional independentset-deletable k-factor-critical(in short,fractional ID-k-factor-critical),if G I has a fractional k-factor for every independent set I of G.The binding number bind(G)of a graph G is defined as bind(G)=min|NG(X)||X|:=X V(G),NG(X)=V(G).In this paper,it is proved that a graph G is fractional ID-k-factor-critical if n≥6k 9 and bind(G)>(3k 1)(n 1)kn 2k+2.
引用
收藏
页码:181 / 186
页数:6
相关论文
共 50 条
  • [21] Binding numbers and (a, b, k)-critical graphs
    Lv, Xiangyang
    ARS COMBINATORIA, 2011, 102 : 353 - 358
  • [22] A Note of Generalization of Fractional ID-factor-critical Graphs
    Zhou, Sizhong
    FUNDAMENTA INFORMATICAE, 2022, 187 (01) : 61 - 69
  • [23] BINDING NUMBERS AND FRACTIONAL (g, f, n)-CRITICAL GRAPHS
    Zhou, Sizhong
    Sun, Zhiren
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2016, 34 (5-6): : 435 - 441
  • [24] Notes on the binding numbers for (a,b,k)-critical graphs
    Zhou, Sizhong
    Jiang, Jiashang
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 76 (02) : 307 - 314
  • [25] Spectral radius, fractional [ a , b ]-factor and ID-factor-critical graphs
    Fan, Ao
    Liu, Ruifang
    Ao, Guoyan
    DISCRETE MATHEMATICS, 2024, 347 (07)
  • [26] A result on fractional ID-[a, b]-factor-critical graphs
    Zhou, Sizhong
    Wu, Jie
    Pan, Quanru
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2014, 58 : 172 - 177
  • [27] A note on fractional ID-[a, b]-factor-critical covered graphs
    Zhou, Sizhong
    Liu, Hongxia
    Xu, Yang
    DISCRETE APPLIED MATHEMATICS, 2022, 319 : 511 - 516
  • [28] A THEOREM ON FRACTIONAL ID-(g, f)-FACTOR-CRITICAL GRAPHS
    Zhou, Sizhong
    Sun, Zhiren
    Xu, Yang
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2015, 10 (02) : 31 - 38
  • [29] A degree condition for graphs to be fractional ID-[a, b]-factor-critical
    Yashima, Takamasa
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2016, 65 : 191 - 199
  • [30] NEIGHBOURHOOD CONDITIONS FOR FRACTIONAL ID-[A, B]-FACTOR-CRITICAL GRAPHS
    Yuan, Yuan
    Sun, Zhiren
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2017, 101 (115): : 205 - 212