(g, f)-factorizations orthogonal to a star in graphs

被引:0
|
作者
刘桂真
机构
[1] Jinan 250100
[2] Department of Mathematics
[3] China
[4] Shandong University
关键词
graph; factor; star; orthogonal factorization;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
Let G be a graph, and F={F1, F2,…,Fm} and H be a factorization and a subgraph of G, respectively. If H has exactly one edge in common with Fi for all i, 1≤i≤m, then we say that F is orthogonal to H. Let g and f be two integer-valued functions defined on V(G) such that 0≤g(x)≤f(x) for every x∈V(G). In this paper, it is proved that for any given star with m edges of an (mg+m-1, mf-m + 1)-graph G, there exists a (g,f)-factorization of G orthogonal to it.
引用
收藏
页码:805 / 812
页数:8
相关论文
共 50 条
  • [31] ORTHOGONAL (g,f)-FACTORIZAFIONS OF BIPARTITE GRAPHS
    刘桂真
    董鹤年
    Acta Mathematica Scientia, 2001, (03) : 316 - 322
  • [32] Randomly r-orthogonal factorizations in bipartite graphs
    Yuan Yuan
    Rong-Xia Hao
    Aequationes mathematicae, 2023, 97 : 511 - 522
  • [33] Randomly r-orthogonal factorizations in bipartite graphs
    Yuan, Yuan
    Hao, Rong-Xia
    AEQUATIONES MATHEMATICAE, 2023, 97 (03) : 511 - 522
  • [34] Orthogonal one-factorizations of complete multipartite graphs
    Mariusz Meszka
    Magdalena Tyniec
    Designs, Codes and Cryptography, 2019, 87 : 987 - 993
  • [35] Orthogonal one-factorizations of complete multipartite graphs
    Meszka, Mariusz
    Tyniec, Magdalena
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (05) : 987 - 993
  • [36] Unbalanced Star-Factorizations of Complete Bipartite Graphs II
    Nigel Martin
    Graphs and Combinatorics, 2007, 23 : 559 - 583
  • [37] Unbalanced star-factorizations of complete bipartite graphs II
    Martin, Nigel
    GRAPHS AND COMBINATORICS, 2007, 23 (05) : 559 - 583
  • [38] Subgraphs with Orthogonal [0, ki]1n-Factorizations in Graphs
    Zhou, Sizhong
    Zhang, Tao
    Xu, Zurun
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, 2017, 10156 : 362 - 370
  • [39] Orthogonal [k-1,k+1]-factorizations in graphs
    Liu, GZ
    Yan, GY
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1996, 51 (02) : 195 - 200
  • [40] A polynomial algorithm for finding (g, f)-colorings orthogonal to stars in bipartite graphs
    Liu, GZ
    Deng, XT
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (03): : 322 - 332