Subgraphs with Orthogonal [0, ki]1n-Factorizations in Graphs

被引:0
|
作者
Zhou, Sizhong [1 ]
Zhang, Tao [2 ]
Xu, Zurun [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Math & Phys, Mengxi Rd 2, Zhenjiang 212003, Jiangsu, Peoples R China
[2] Jiangsu Univ Sci & Technol, Sch Econ & Management, Mengxi Rd 2, Zhenjiang 212003, Jiangsu, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Graph; Subgraph; Factor; 0; ki](1)(m)-Factorization; Orthogonal; (G; F)-FACTORIZATIONS; SUBDIGRAPHS; NETWORKS;
D O I
10.1007/978-3-319-53007-9_32
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let m, n, r and ki (1 <= i <= m) be positive integers with n <= m and k(1) >= k(2) = ... = k(m) >= 2r - 1. Let G be a graph, and let H-1, H-2, ... , Hr be vertex-disjoint n-subgraphs of G. It is verified in this article that every [0, k(1) + k(2) + ... + k(m-n) + 1]-graph G includes a subgraph R such that R has a [0, k(i)] n(1) -factorization orthogonal to every Hi, 1 <= i <= r.
引用
收藏
页码:362 / 370
页数:9
相关论文
共 50 条
  • [1] Subgraphs with orthogonal factorizations in graphs
    Zhou, Sizhong
    Zhang, Tao
    Xu, Zurun
    DISCRETE APPLIED MATHEMATICS, 2020, 286 (286) : 29 - 34
  • [2] [0, ki]1m-Factorizations Orthogonal to a Subgraph
    Run-nian Ma
    Jin Xu
    Hang-shan Gao
    Applied Mathematics and Mechanics, 2001, 22 : 593 - 596
  • [3] [0,ki]1~m-FACTORIZATIONS ORTHOGONAL TO A SUBGRAPH
    马润年
    许进
    高行山
    Applied Mathematics and Mechanics(English Edition), 2001, (05) : 593 - 596
  • [4] [0, ki]1m-factorizations orthogonal to a subgraph
    Ma, RN
    Xu, J
    Gao, HS
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2001, 22 (05) : 593 - 596
  • [5] SUBGRAPHS AND FACTORIZATIONS OF FUNCTIONAL GRAPHS
    KIREEVA, AV
    RUSSIAN MATHEMATICAL SURVEYS, 1993, 48 (02) : 188 - 189
  • [6] Orthogonal factorizations of graphs
    Feng, HD
    Liu, GZ
    JOURNAL OF GRAPH THEORY, 2002, 40 (04) : 267 - 276
  • [7] Orthogonal factorizations of graphs
    Li, GJ
    Chen, CP
    Yu, G
    DISCRETE MATHEMATICS, 2002, 245 (1-3) : 173 - 194
  • [8] RANDOMLY ORTHOGONAL FACTORIZATIONS OF (0,mf-(m-1)r)-GRAPHS
    Zhou, Sizhong
    Zong, Minggang
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (06) : 1613 - 1622
  • [9] Subgraphs with orthogonal factorizations and algorithms Changping Wang
    Wang, Changping
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (07) : 1706 - 1713
  • [10] A Generalization of Orthogonal Factorizations in Graphs
    Guo Jun Li
    Gui Zhen Liu
    Acta Mathematica Sinica, 2001, 17 : 669 - 678