Stationary patterns in a discrete bistable reaction-diffusion system:mode analysis

被引:0
|
作者
邹为 [1 ,2 ]
占萌 [1 ]
机构
[1] Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences
[2] Graduate School of the Chinese Academy of Sciences
关键词
discrete reaction–diffusion system; stationary patterns; bistable; mode analysis;
D O I
暂无
中图分类号
N93 [非线性科学];
学科分类号
07 ;
摘要
This paper theoretically analyses and studies stationary patterns in diffusively coupled bistable elements. Since these stationary patterns consist of two types of stationary mode structure: kink and pulse, a mode analysis method is proposed to approximate the solutions of these localized basic modes and to analyse their stabilities. Using this method, it reconstructs the whole stationary patterns. The cellular mode structures (kink and pulse) in bistable media fundamentally differ from stationary patterns in monostable media showing spatial periodicity induced by a diffusive Turing bifurcation.
引用
收藏
页码:178 / 187
页数:10
相关论文
共 50 条
  • [31] Traveling Waves and Pattern Formation for Spatially Discrete Bistable Reaction-Diffusion Equations
    Hupkes, Hermen Jan
    Morelli, Leonardo
    Schouten-Straatman, Willem M.
    Van Vleck, Erik S.
    DIFFERENCE EQUATIONS AND DISCRETE DYNAMICAL SYSTEMS WITH APPLICATIONS, ICDEA 2018, 2020, 312 : 55 - 112
  • [32] Stable stationary patterns and interfaces arising in reaction-diffusion systems
    Oshita, Y
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (02) : 479 - 497
  • [33] Existence of positive stationary solutions for a reaction-diffusion system
    Wang, Fanglei
    Wang, Yunhai
    BOUNDARY VALUE PROBLEMS, 2016, : 1 - 10
  • [34] Oscillatory pulses and wave trains in a bistable reaction-diffusion system with cross diffusion
    Zemskov, Evgeny P.
    Tsyganov, Mikhail A.
    Horsthemke, Werner
    PHYSICAL REVIEW E, 2017, 95 (01)
  • [35] Generic hyperbolicity of stationary solutions for a reaction-diffusion system
    Broche, Rita de Cassia D. S.
    Pereira, Marcone C.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) : 4638 - 4648
  • [36] Existence of positive stationary solutions for a reaction-diffusion system
    Fanglei Wang
    Yunhai Wang
    Boundary Value Problems, 2016
  • [37] A multiscale-analysis of stochastic bistable reaction-diffusion equations
    Krueger, J.
    Stannat, W.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 162 : 197 - 223
  • [38] Resonant phase patterns in a reaction-diffusion system
    Lin, AL
    Bertram, M
    Martinez, K
    Swinney, HL
    Ardelea, A
    Carey, GF
    PHYSICAL REVIEW LETTERS, 2000, 84 (18) : 4240 - 4243
  • [39] SPATIAL PATTERNS IN A SIMPLE REACTION-DIFFUSION SYSTEM
    LAHIRI, A
    GHOSAL, SS
    PHYSICS LETTERS A, 1987, 124 (1-2) : 47 - 52
  • [40] TARGET PATTERNS AND PACEMAKERS IN A REACTION-DIFFUSION SYSTEM
    NAGASHIMA, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1991, 60 (09) : 2797 - 2799