Failure pressure calculation of fracturing well based on fluid-structure interaction

被引:1
|
作者
Jinzhou Zhao
机构
基金
中国国家自然科学基金;
关键词
failure pressure; fluid-structure interaction; hydrofracturing; coupling method; response-surface method;
D O I
暂无
中图分类号
TE357 [提高采收率与维持油层压力(二次、三次采油)];
学科分类号
摘要
Failure pressure is a key parameter in reservoir hydrofracturing operation. Existing analytical methods for calculating the failure pressure are based on the assumption that borehole fluid is under two extreme conditions: non-infiltration or complete infiltration. The assumption is not suitable for the actual infiltration process, and this will cause a great error in practical calculation. It shows that during the injection process, the dynamic variation in effective stress-dependent permeability has an influence on the infiltration, and the influence also brings about calculation errors. Based on the fluid-structure interaction and finite element method (FEM), considering partial infiltration during injection process, a numerical model for calculating rock failure pressure is established. According to the analysis of permeability test results and response-surface method, a new variation rule of rock permeability with the change of effective stress is presented, and the relationships among the permeability, confining pressure and pore pressure are proposed. There are some differences between the dynamic value of permeability-effective-stress coefficient observed herein and the one obtained by the classical theory. Combining with the numerical model and the dynamic permeability, a coupling method for calculating failure pressure is developed. Comparison of field data and calculated values obtained by various methods shows that accurate values can be obtained by the coupling method. The coupling method can be widely applied to the calculation of failure pressure of reservoirs and complex wells to achieve effective fracturing operation.
引用
收藏
页码:450 / 456
页数:7
相关论文
共 50 条
  • [31] Fluid-Structure Interaction of Propellers
    Neugebauer, Jens
    Abdel-Maksoud, Aloustafa
    Braun, Manfred
    IUTAM SYMPOSIUM ON FLUID-STRUCTURE INTERACTION IN OCEAN ENGINEERING, 2008, 8 : 191 - +
  • [32] FLUID-STRUCTURE INTERACTION.
    Belytschko, Ted
    IEE Conference Publication, 1979, 1 : 1 - 9
  • [33] Modeling of fluid-structure interaction
    Solid Mechanics and its Applications, 2015, 217 : 439 - 478
  • [34] Fluid-structure interaction problems
    Natroshvili, D
    Sändig, AM
    Wendland, WL
    MATHEMATICAL ASPECTS OF BOUNDARY ELEMENT METHODS: DEDICATED TO VLADIMIR MAZ'YA ON THE OCCASION OF HIS 60TH BIRTHDAY, 2000, 414 : 252 - 262
  • [35] Modeling fluid-structure interaction
    Ortiz, JL
    Barhorst, AA
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1997, 20 (06) : 1221 - 1228
  • [36] WATERHAMMER WITH FLUID-STRUCTURE INTERACTION
    TIJSSELING, AS
    LAVOOIJ, CSW
    APPLIED SCIENTIFIC RESEARCH, 1990, 47 (03): : 273 - 285
  • [37] ACOUSTIC FLUID-STRUCTURE INTERACTION
    Gaul, Lothar
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2013, VOL 9, 2014,
  • [38] Fluid-structure interaction - Preface
    Ohayon, R
    Kvamsdal, T
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (17-18) : 1913 - 1913
  • [39] On a fluid-structure interaction problem
    Flori, F
    Orenga, P
    TRENDS IN APPLICATIONS OF MATHEMATICS TO MECHANICS, 2000, 106 : 293 - 305
  • [40] On the fluid-structure interaction in the cochlea
    Rapson, Michael J.
    Hamilton, Tara J.
    Tapson, Jonathan C.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2014, 136 (01): : 284 - 300