On the fluid-structure interaction in the cochlea

被引:2
|
作者
Rapson, Michael J. [1 ]
Hamilton, Tara J. [2 ]
Tapson, Jonathan C. [2 ]
机构
[1] Univ Cape Town, Dept Elect Engn, ZA-7701 Cape Town, South Africa
[2] Univ Western Sydney, MARCS Inst, Penrith, NSW 2751, Australia
来源
基金
新加坡国家研究基金会;
关键词
STATE-SPACE; BASILAR-MEMBRANE; MODEL; VIBRATION;
D O I
10.1121/1.4883382
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The cochlea is known to be a nonlinear system that shows strong fluid-structure coupling. In this work, the monolithic state space approach to cochlear modeling [Rapson et al., J. Acoust. Soc. Am. 131, 3925-3952 (2012)] is used to study the inherent nature of this coupling. Mathematical derivations requiring minimal, widely accepted assumptions about cochlear anatomy provide a clear description of the coupling. In particular, the coupling forces between neighboring cochlear partition segments are demonstrated, with implications for theories of cochlear operation that discount the traveling wave hypothesis. The derivations also reaffirm the importance of selecting a physiologically accurate value for the partition mass in any simulation. Numerical results show that considering the fluid properties in isolation can give a misleading impression of the fluid-structure coupling. Linearization of a nonlinear partition model allows the relationship between the linear and nonlinear fluid-structure interaction to be described. Furthermore, the effect of different classes of nonlinearities on the numerical complexity of a cochlear model is assessed. Cochlear models that assume outer hair cells are able to detect pressure will require implicit solver strategies, should the pressure sensitivity be demonstrated. Classical cochlear models in general do not require implicit solver strategies. (C) 2014 Acoustical Society of America.
引用
下载
收藏
页码:284 / 300
页数:17
相关论文
共 50 条
  • [1] FINITE ELEMENT MODELING OF THE HUMAN COCHLEA USING FLUID-STRUCTURE INTERACTION METHOD
    Xu, Lifu
    Huang, Xinsheng
    Ta, Na
    Rao, Zhushi
    Tian, Jiabin
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2015, 15 (03)
  • [2] FLUID-STRUCTURE INTERACTION Fluid-Structure Interaction Issues in Aeronautical Engineering
    Jo, Jong Chull
    Giannopapa, Christina
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE (PVP-2011), VOL 4, 2012, : 421 - 421
  • [3] Fluid-structure interaction
    Ohayon, R.
    STRUCTURAL DYNAMICS - EURODYN 2005, VOLS 1-3, 2005, : 13 - 20
  • [4] FLUID-STRUCTURE INTERACTION Fluid Structure Interaction and Sloshing
    Brochard, D.
    Tomoyo, Taniguchi
    Ma, D. C.
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE (PVP-2011), VOL 4, 2012, : 389 - +
  • [5] Fluid-Structure Interaction
    Ohayon, Roger
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS, EURODYN 2011, 2011, : 53 - 59
  • [6] FLUID-STRUCTURE INTERACTION
    BELYTSCHKO, T
    COMPUTERS & STRUCTURES, 1980, 12 (04) : 459 - 469
  • [7] Fluid-structure interaction
    Technical Program Representative FSI
    ASME Pressure Vessels Piping Div. Publ. PVP, 2006,
  • [8] Fluid-Structure Interaction of Propellers
    Neugebauer, Jens
    Abdel-Maksoud, Aloustafa
    Braun, Manfred
    IUTAM SYMPOSIUM ON FLUID-STRUCTURE INTERACTION IN OCEAN ENGINEERING, 2008, 8 : 191 - +
  • [9] FLUID-STRUCTURE INTERACTION.
    Belytschko, Ted
    IEE Conference Publication, 1979, 1 : 1 - 9
  • [10] Modeling of fluid-structure interaction
    Solid Mechanics and its Applications, 2015, 217 : 439 - 478