On the fluid-structure interaction in the cochlea

被引:2
|
作者
Rapson, Michael J. [1 ]
Hamilton, Tara J. [2 ]
Tapson, Jonathan C. [2 ]
机构
[1] Univ Cape Town, Dept Elect Engn, ZA-7701 Cape Town, South Africa
[2] Univ Western Sydney, MARCS Inst, Penrith, NSW 2751, Australia
来源
基金
新加坡国家研究基金会;
关键词
STATE-SPACE; BASILAR-MEMBRANE; MODEL; VIBRATION;
D O I
10.1121/1.4883382
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The cochlea is known to be a nonlinear system that shows strong fluid-structure coupling. In this work, the monolithic state space approach to cochlear modeling [Rapson et al., J. Acoust. Soc. Am. 131, 3925-3952 (2012)] is used to study the inherent nature of this coupling. Mathematical derivations requiring minimal, widely accepted assumptions about cochlear anatomy provide a clear description of the coupling. In particular, the coupling forces between neighboring cochlear partition segments are demonstrated, with implications for theories of cochlear operation that discount the traveling wave hypothesis. The derivations also reaffirm the importance of selecting a physiologically accurate value for the partition mass in any simulation. Numerical results show that considering the fluid properties in isolation can give a misleading impression of the fluid-structure coupling. Linearization of a nonlinear partition model allows the relationship between the linear and nonlinear fluid-structure interaction to be described. Furthermore, the effect of different classes of nonlinearities on the numerical complexity of a cochlear model is assessed. Cochlear models that assume outer hair cells are able to detect pressure will require implicit solver strategies, should the pressure sensitivity be demonstrated. Classical cochlear models in general do not require implicit solver strategies. (C) 2014 Acoustical Society of America.
引用
下载
收藏
页码:284 / 300
页数:17
相关论文
共 50 条
  • [31] Dimensional analysis in fluid-structure interaction
    de Langre, E
    HOUILLE BLANCHE-REVUE INTERNATIONALE DE L EAU, 2000, (3-4): : 14 - 18
  • [32] New Advances in Fluid-Structure Interaction
    Chen, Wenli
    Yang, Zifeng
    Hu, Gang
    Jing, Haiquan
    Wang, Junlei
    APPLIED SCIENCES-BASEL, 2022, 12 (11):
  • [33] SPH modeling of fluid-structure interaction
    Luhui Han
    Xiangyu Hu
    Journal of Hydrodynamics, 2018, 30 (01) : 62 - 69
  • [34] Fluid-structure interaction in the safety of infrastructures
    Cesteiro, A.
    Ramos, H. M.
    INTEGRATING WATER SYSTEMS, 2010, : 613 - 619
  • [35] Fluid-structure interaction for aeroelastic applications
    Kamakoti, R
    Shyy, W
    PROGRESS IN AEROSPACE SCIENCES, 2004, 40 (08) : 535 - 558
  • [36] SPH modeling of fluid-structure interaction
    Han, Luhui
    Hu, Xiangyu
    JOURNAL OF HYDRODYNAMICS, 2018, 30 (01) : 62 - 69
  • [37] Fluid-structure interaction in ship structures
    Besnier, F
    HOUILLE BLANCHE-REVUE INTERNATIONALE DE L EAU, 2000, (02): : 86 - 91
  • [38] Fluid-structure interaction in crash simulation
    Meywerk, M
    Decker, F
    Cordes, J
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2000, 214 (D7) : 669 - 673
  • [39] Simulating Fluid-Structure Interaction with SPH
    Viccione, Giacomo
    Bovolin, Vittorio
    Carratelli, Eugenio Pugliese
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 209 - 212
  • [40] Computational Fluid-Structure Interaction in Microfluidics
    Musharaf, Hafiz Muhammad
    Roshan, Uditha
    Mudugamuwa, Amith
    Trinh, Quang Thang
    Zhang, Jun
    Nguyen, Nam-Trung
    MICROMACHINES, 2024, 15 (07)