Some Ergodic Theorems for a Parabolic Anderson Model

被引:0
|
作者
Yong LIU LMAM [1 ]
Feng Xia YANG [2 ]
机构
[1] School of Mathematical Sciences,and Institute of Mathematics,and Center for Statistical Science,Peking University
[2] LMAM,School of Mathematical Sciences,Peking University
基金
中国国家自然科学基金;
关键词
Linear system of interacting diffusion; parabolic Anderson model; ergodic invariant measures; clustering phenomena;
D O I
暂无
中图分类号
O211.63 [随机微分方程];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper,we study some ergodic theorems of a class of linear systems of interacting diffusions,which is a parabolic Anderson model.First,under the assumption that the transition kernel a=(a(i,j)) i,j∈s is doubly stochastic,we obtain the long-time convergence to an invariant probability measure νh starting from a bounded a-harmonic function h based on self-duality property,and then we show the convergence to the invariant probability measure νh holds for a broad class of initial distributions.Second,if(a(i,j)) i,j∈S is transient and symmetric,and the diffusion parameter c remains below a threshold,we are able to determine the set of extremal invariant probability measures with finite second moment.Finally,in the case that the transition kernel(a(i,j)) i,j∈S is doubly stochastic and satisfies Case I(see Case I in [Shiga,T.:An interacting system in population genetics.J.Math.Kyoto Univ.,20,213-242(1980)]),we show that this parabolic Anderson model locally dies out independent of the diffusion parameter c.
引用
收藏
页码:2443 / 2462
页数:20
相关论文
共 50 条
  • [31] ON SOME ERGODIC-THEOREMS FOR VONNEUMANN-ALGEBRAS
    HENSZ, E
    LECTURE NOTES IN MATHEMATICS, 1984, 1080 : 119 - 123
  • [32] SOME WEAK-STAR ERGODIC-THEOREMS
    SZUCS, JM
    ACTA SCIENTIARUM MATHEMATICARUM, 1983, 45 (1-4): : 389 - 394
  • [33] The Universality Classes in the Parabolic Anderson Model
    Remco van der Hofstad
    Wolfgang König
    Peter Mörters
    Communications in Mathematical Physics, 2006, 267 : 307 - 353
  • [34] The Parabolic Anderson Model with Acceleration and Deceleration
    König, W. (koenig@wias-berlin.de), 1600, Springer Verlag (11):
  • [35] The parabolic Anderson model on Riemann surfaces
    Antoine Dahlqvist
    Joscha Diehl
    Bruce K. Driver
    Probability Theory and Related Fields, 2019, 174 : 369 - 444
  • [36] STATIONARY PARABOLIC ANDERSON MODEL AND INTERMITTENCY
    CARMONA, RA
    MOLCHANOV, SA
    PROBABILITY THEORY AND RELATED FIELDS, 1995, 102 (04) : 433 - 453
  • [37] On large deviations for the parabolic Anderson model
    M. Cranston
    D. Gauthier
    T. S. Mountford
    Probability Theory and Related Fields, 2010, 147 : 349 - 378
  • [38] The parabolic Anderson model on Riemann surfaces
    Dahlqvist, Antoine
    Diehl, Joscha
    Driver, Bruce K.
    PROBABILITY THEORY AND RELATED FIELDS, 2019, 174 (1-2) : 369 - 444
  • [39] On large deviations for the parabolic Anderson model
    Cranston, M.
    Gauthier, D.
    Mountford, T. S.
    PROBABILITY THEORY AND RELATED FIELDS, 2010, 147 (1-2) : 349 - 378
  • [40] The universality classes in the parabolic Anderson model
    van der Hofstad, Remco
    Koenig, Wolfgang
    Moerters, Peter
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 267 (02) : 307 - 353