Let M be aσ-finite von Neumann algebra and let AM be a maximal subdiagonal algebra with respect to a faithful normal conditional expectationΦ.Based on the Haagerup’s noncommutative Lpspace Lp(M)associated with M,we consider Toeplitz operators and the Hilbert transform associated with A.We prove that the commutant of left analytic Toeplitz algebra on noncommutative Hardy space H2(M)is just the right analytic Toeplitz algebra.Furthermore,the Hilbert transform on noncommutative Lp(M)is shown to be bounded for 1<p<∞.As an application,we consider a noncommutative analog of the space BMO and identify the dual space of noncommutative H1(M)as a concrete space of operators.