Analytic Toeplitz algebras and the Hilbert transform associated with a subdiagonal algebra

被引:0
|
作者
JI GuoXing [1 ]
机构
[1] College of Mathematics and Information Science, Shaanxi Normal University
基金
中央高校基本科研业务费专项资金资助; 中国国家自然科学基金;
关键词
von Neumann algebra; subdiagonal algebra; noncommutative Hpspace; Toeplitz operator; Hilbert transform;
D O I
暂无
中图分类号
O153 [抽象代数(近世代数)];
学科分类号
070104 ;
摘要
Let M be aσ-finite von Neumann algebra and let AM be a maximal subdiagonal algebra with respect to a faithful normal conditional expectationΦ.Based on the Haagerup’s noncommutative Lpspace Lp(M)associated with M,we consider Toeplitz operators and the Hilbert transform associated with A.We prove that the commutant of left analytic Toeplitz algebra on noncommutative Hardy space H2(M)is just the right analytic Toeplitz algebra.Furthermore,the Hilbert transform on noncommutative Lp(M)is shown to be bounded for 1<p<∞.As an application,we consider a noncommutative analog of the space BMO and identify the dual space of noncommutative H1(M)as a concrete space of operators.
引用
收藏
页码:579 / 588
页数:10
相关论文
共 50 条