The Global Well-posedness for the 2D Leray-α MHD Equations with Zero Magnetic Diffusivity

被引:0
|
作者
Qiong Lei CHEN [1 ]
机构
[1] Institute of Applied Physics and Computational Mathematics
关键词
Leray-α-MHD equations; blow-up criterion; Littlewood–Paley decomposition;
D O I
暂无
中图分类号
O175 [微分方程、积分方程]; O35 [流体力学];
学科分类号
070104 ; 080103 ; 080704 ;
摘要
By means of Fourier frequency localization and Bony’s paraproduct decomposition,we study the global existence and the uniqueness of the 2D Leray-α Magneta-hydrodynamics model with zero magnetic diffusivity for the general initial data.In view of the profits bring by the α model,then using the energy estimate in the frequency space and the Logarithmic Sobolev inequality,we obtain the estimate ∫t0||?u|| Lds which is crucial to get the global existence for the general initial data.
引用
收藏
页码:1145 / 1158
页数:14
相关论文
共 50 条
  • [41] Global well-posedness of the 2D Boussinesq equations with fractional Laplacian dissipation
    Ye, Zhuan
    Xu, Xiaojing
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (08) : 6716 - 6744
  • [42] GLOBAL WELL-POSEDNESS OF THE STOCHASTIC 2D BOUSSINESQ EQUATIONS WITH PARTIAL VISCOSITY
    Pu Xueke
    Guo Boling
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (05) : 1968 - 1984
  • [43] Global well-posedness of a model on 2D Boussinesq-Benard equations
    Li, Chaoying
    Xu, Xiaojing
    Ye, Zhuan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (01):
  • [44] ON THE WELL-POSEDNESS OF THE STOCHASTIC 2D PRIMITIVE EQUATIONS
    Sun, Chengfeng
    Su, Lijuan
    Liu, Hui
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (03): : 1273 - 1295
  • [45] Global Well-Posedness for MHD Equations with Magnetic Diffusion and Damping Term in R2
    Feng, Weixun
    Qin, Dongdong
    Zhu, Rui
    Chen, Zhi
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (04)
  • [46] On the Global Well-Posedness of the 3D Axisymmetric Resistive MHD Equations
    Hassainia, Zineb
    ANNALES HENRI POINCARE, 2022, 23 (08): : 2877 - 2917
  • [47] Global well-posedness of a model on 2D Boussinesq–Bénard equations
    Chaoying Li
    Xiaojing Xu
    Zhuan Ye
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [48] Persistence of global well-posedness for the 2D Boussinesq equations with fractional dissipation
    Su, Xing
    Wang, Gangwei
    Wang, Yue
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [49] GLOBAL WELL-POSEDNESS FOR THE 2D FRACTIONAL BOUSSINESQ EQUATIONS IN THE SUBCRITICAL CASE
    Zhou, Daoguo
    Li, Zilai
    Shang, Haifeng
    Wu, Jiahong
    Yuan, Baoquan
    Zhao, Jiefeng
    PACIFIC JOURNAL OF MATHEMATICS, 2019, 298 (01) : 233 - 255
  • [50] Global well-posedness of the MHD equations via the comparison principle
    Dongyi Wei
    Zhifei Zhang
    ScienceChina(Mathematics), 2018, 61 (11) : 2111 - 2120