The Global Well-posedness for the 2D Leray-α MHD Equations with Zero Magnetic Diffusivity

被引:0
|
作者
Qiong Lei CHEN [1 ]
机构
[1] Institute of Applied Physics and Computational Mathematics
关键词
Leray-α-MHD equations; blow-up criterion; Littlewood–Paley decomposition;
D O I
暂无
中图分类号
O175 [微分方程、积分方程]; O35 [流体力学];
学科分类号
070104 ; 080103 ; 080704 ;
摘要
By means of Fourier frequency localization and Bony’s paraproduct decomposition,we study the global existence and the uniqueness of the 2D Leray-α Magneta-hydrodynamics model with zero magnetic diffusivity for the general initial data.In view of the profits bring by the α model,then using the energy estimate in the frequency space and the Logarithmic Sobolev inequality,we obtain the estimate ∫t0||?u|| Lds which is crucial to get the global existence for the general initial data.
引用
收藏
页码:1145 / 1158
页数:14
相关论文
共 50 条
  • [31] Global well-posedness for the 2D non-resistive MHD equations in two kinds of periodic domains
    Qionglei Chen
    Xiaoxia Ren
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [32] Global well-posedness for the 2D non-resistive MHD equations in two kinds of periodic domains
    Chen, Qionglei
    Ren, Xiaoxia
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (01):
  • [33] On the global well-posedness and striated regularity of the 2D Boussinesq-MHD system
    Niu, Dongjuan
    Peng, Jiao
    Wang, Lu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (04) : 2572 - 2595
  • [34] GLOBAL WELL-POSEDNESS OF 2D INCOMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS WITH HORIZONTAL DISSIPATION
    Suo, Xiaoxiao
    Jiu, Quansen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (09) : 4523 - 4553
  • [35] GLOBAL WELL-POSEDNESS FOR THE 2D BOUSSINESQ EQUATIONS WITH A VELOCITY DAMPING TERM
    Wan, Renhui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (05) : 2709 - 2730
  • [36] Persistence of global well-posedness for the 2D Boussinesq equations with fractional dissipation
    Xing Su
    Gangwei Wang
    Yue Wang
    Advances in Difference Equations, 2019
  • [37] Global well-posedness of 2D stochastic Burgers equations with multiplicative noise
    Zhou, Guoli
    Wang, Lidan
    Wu, Jiang-Lun
    STATISTICS & PROBABILITY LETTERS, 2022, 182
  • [38] On the Global Well-Posedness of the 3D Axisymmetric Resistive MHD Equations
    Zineb Hassainia
    Annales Henri Poincaré, 2022, 23 : 2877 - 2917
  • [39] GLOBAL WELL-POSEDNESS OF THE STOCHASTIC 2D BOUSSINESQ EQUATIONS WITH PARTIAL VISCOSITY
    蒲学科
    郭柏灵
    ActaMathematicaScientia, 2011, 31 (05) : 1968 - 1984
  • [40] Global well-posedness of a model on 2D Boussinesq–Bénard equations
    Li, Chaoying
    Xu, Xiaojing
    Ye, Zhuan
    Zeitschrift fur Angewandte Mathematik und Physik, 2021, 72 (01):