Immiscible incompressible problem;
maximum principle;
numerical method;
D O I:
暂无
中图分类号:
O351 [普通流体力学];
学科分类号:
080103 ;
080704 ;
摘要:
Two-phase, immiscible, incompressible flow in porous media is governed by a system of nonlinear partial differential equations. In most practical applications convection physically dominates diffusion, and the object of this paper is to develop a finite difference method combined with the method of characteristics and the lumped mass method to treat the parabolic equation of the differential system. This method is shown satisfy the maximum principle and its error analysis is presented.
机构:
Waseda Univ, Grad Sch Fundamental Sci & Engn, Dept Pure & Appl Math, Shinjuku Ku, 3-4-1 Ookubo, Tokyo 1698555, JapanWaseda Univ, Grad Sch Fundamental Sci & Engn, Dept Pure & Appl Math, Shinjuku Ku, 3-4-1 Ookubo, Tokyo 1698555, Japan
机构:
King Abdullah Univ Sci & Technol, Div Phys Sci & Engn PSE, CTPL, Thuwal 239556900, Saudi ArabiaKing Abdullah Univ Sci & Technol, Div Phys Sci & Engn PSE, CTPL, Thuwal 239556900, Saudi Arabia
Salama, Amgad
Sun, Shuyu
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol, Div Phys Sci & Engn PSE, CTPL, Thuwal 239556900, Saudi ArabiaKing Abdullah Univ Sci & Technol, Div Phys Sci & Engn PSE, CTPL, Thuwal 239556900, Saudi Arabia
Sun, Shuyu
El Amin, Mohamed F.
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol, Div Phys Sci & Engn PSE, CTPL, Thuwal 239556900, Saudi ArabiaKing Abdullah Univ Sci & Technol, Div Phys Sci & Engn PSE, CTPL, Thuwal 239556900, Saudi Arabia
El Amin, Mohamed F.
POROUS MEDIA AND ITS APPLICATIONS IN SCIENCE, ENGINEERING, AND INDUSTRY,
2012,
1453
: 135
-
140