A NEW NUMERICAL METHOD FOR TWO-PHASE IMMISCIBLE INCOMPRESSIBLE PROBLEM

被引:0
|
作者
孙文涛
机构
关键词
Immiscible incompressible problem; maximum principle; numerical method;
D O I
暂无
中图分类号
O351 [普通流体力学];
学科分类号
080103 ; 080704 ;
摘要
Two-phase, immiscible, incompressible flow in porous media is governed by a system of nonlinear partial differential equations. In most practical applications convection physically dominates diffusion, and the object of this paper is to develop a finite difference method combined with the method of characteristics and the lumped mass method to treat the parabolic equation of the differential system. This method is shown satisfy the maximum principle and its error analysis is presented.
引用
收藏
页码:38 / 44
页数:7
相关论文
共 50 条
  • [21] Homogenization of nonisothermal immiscible incompressible two-phase flow in double porosity media
    Amaziane, B.
    Jurak, M.
    Pankratov, L.
    Piatnitski, A.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 61
  • [22] Numerical Computation of an Immiscible Two-Phase Flow in Comparison with Experiment
    Rzehak, R.
    Leefken, A.
    Al-Sibai, F.
    Mueller-Krumbhaar, H.
    Renz, U.
    JOURNAL OF ENGINEERING THERMOPHYSICS, 2008, 17 (01) : 80 - 94
  • [23] Finite element method for two-phase immiscible flow
    Sun, WT
    Zhang, HY
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 1999, 15 (04) : 407 - 416
  • [24] Numerical simulation of immiscible two-phase flow in porous media
    Riaz, A
    Tchelepi, HA
    PHYSICS OF FLUIDS, 2006, 18 (01)
  • [25] Numerical computation of an immiscible two-phase flow in comparison with experiment
    R. Rzehak
    A. Leefken
    F. Al-Sibai
    H. Müller-Krumbhaar
    U. Renz
    Journal of Engineering Thermophysics, 2008, 17 (1) : 80 - 94
  • [26] Compressible–Incompressible Two-Phase Flows with Phase Transition: Model Problem
    Keiichi Watanabe
    Journal of Mathematical Fluid Mechanics, 2018, 20 : 969 - 1011
  • [27] A new method for simulating rigid body motion in incompressible two-phase flow
    Sanders, Jessica
    Dolbow, John E.
    Mucha, Peter J.
    Laursen, Tod A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 67 (06) : 713 - 732
  • [28] Numerical method for nonlinear two-phase displacement problem and its application
    袁益让
    梁栋
    芮洪兴
    杜宁
    王文洽
    AppliedMathematicsandMechanics(EnglishEdition), 2008, (05) : 639 - 652
  • [29] Numerical method for nonlinear two-phase displacement problem and its application
    Yi-rang Yuan
    Dong Liang
    Hong-xing Rui
    Ning Du
    Wen-qia Wang
    Applied Mathematics and Mechanics, 2008, 29 : 639 - 652
  • [30] Numerical method for nonlinear two-phase displacement problem and its application
    Yuan Yi-rang
    Liang Dong
    Rui Hong-xing
    Du Ning
    Wang Wen-qia
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2008, 29 (05) : 639 - 652