A NEW NUMERICAL METHOD FOR TWO-PHASE IMMISCIBLE INCOMPRESSIBLE PROBLEM

被引:0
|
作者
孙文涛
机构
关键词
Immiscible incompressible problem; maximum principle; numerical method;
D O I
暂无
中图分类号
O351 [普通流体力学];
学科分类号
080103 ; 080704 ;
摘要
Two-phase, immiscible, incompressible flow in porous media is governed by a system of nonlinear partial differential equations. In most practical applications convection physically dominates diffusion, and the object of this paper is to develop a finite difference method combined with the method of characteristics and the lumped mass method to treat the parabolic equation of the differential system. This method is shown satisfy the maximum principle and its error analysis is presented.
引用
收藏
页码:38 / 44
页数:7
相关论文
共 50 条
  • [1] A finite element collocation method for two-phase incompressible immiscible problems
    Ma, Ning
    ACTA MATHEMATICA SCIENTIA, 2007, 27 (04) : 875 - 885
  • [2] A FINITE ELEMENT COLLOCATION METHOD FOR TWO-PHASE INCOMPRESSIBLE IMMISCIBLE PROBLEMS
    马宁
    ActaMathematicaScientia, 2007, (04) : 875 - 885
  • [3] Numerical simulation of two-phase immiscible incompressible flows in heterogeneous porous media with capillary barriers
    Mozolevski, I.
    Schuh, L.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 242 : 12 - 27
  • [4] Parallelized numerical modeling of the interaction of a solid object with immiscible incompressible two-phase fluid flow
    Ghasemi, Amirmahdi
    Nikbakhti, R.
    Ghasemi, Amirreza
    Hedayati, Faraz
    Malvandi, Amir
    ENGINEERING COMPUTATIONS, 2017, 34 (03) : 709 - 724
  • [5] A numerical method for incompressible two-phase flows with open or periodic boundaries
    Son, G
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2001, 39 (01) : 45 - 60
  • [6] Nitsche’s Method for a Transport Problem in Two-phase Incompressible Flows
    Arnold Reusken
    Trung Hieu Nguyen
    Journal of Fourier Analysis and Applications, 2009, 15 : 663 - 683
  • [7] Nitsche's Method for a Transport Problem in Two-phase Incompressible Flows
    Reusken, Arnold
    Nguyen, Trung Hieu
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2009, 15 (05) : 663 - 683
  • [8] Homogenization of immiscible incompressible two-phase flow in double porosity media
    Amaziane, Brahim
    Jurak, Mladen
    Pankratov, Leonid
    Vrbaski, Anja
    MATEMATICKE METODE I NAZIVLJE U GEOLOGIJI, 2016, : 109 - 110
  • [9] Local statistics of immiscible and incompressible two-phase flow in porous media
    Fyhn, Hursanay
    Sinha, Santanu
    Hansen, Alex
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 616
  • [10] Homogenization of nonisothermal immiscible incompressible two-phase flow in porous media
    Amaziane, B.
    Jurak, M.
    Pankratov, L.
    Piatnitski, A.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 43 : 192 - 212