The application of Hartley transform to ocean engineering

被引:0
|
作者
Hequan Sun
机构
基金
中国国家自然科学基金;
关键词
Hartley transform; Fourier transform; ocean engineering; separation of waves; PIV;
D O I
暂无
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The Hartley transform is a real integral transform based on harmonic functions and hassome characteristics similar to the Fourier transform. Most applications in ocean engineering requiring the Fourier transform can also be performed by the Hartley transform. The fast Hartley transform is twice faster and more convenient to handle than the corresponding fast Fourier transform, so it is a real valued alternative to the complex Fourier transform in many applications. The use of the Hartley transform in ocean engineering is presented in detail in this paper, including wave spectral analysis, separation of waves, cross-correlation in PIV technique and expression of equation in the Hartley domain. The examples in the paper show deeply the advantage and efficiency of the Hartley transform over the Fourier transform.
引用
下载
收藏
页码:483 / 490
页数:8
相关论文
共 50 条
  • [41] INTERPOLATION USING HARTLEY TRANSFORM
    AGBINYA, JI
    ELECTRONICS LETTERS, 1992, 28 (14) : 1355 - 1355
  • [42] Hartley transform for integrable Boehmians
    Loonker, Deshna
    Banerjia, P. K.
    Debnath, Lokenath
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (06) : 459 - 464
  • [43] OPTICAL SYNTHESIS OF THE HARTLEY TRANSFORM
    BRACEWELL, RN
    BARTELT, H
    LOHMANN, AW
    STREIBL, N
    APPLIED OPTICS, 1985, 24 (10): : 1401 - 1402
  • [44] ON COMPUTING THE DISCRETE HARTLEY TRANSFORM
    SORENSEN, HV
    JONES, DL
    BURRUS, CS
    HEIDEMAN, MT
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1985, 33 (05): : 1231 - 1238
  • [45] COMPUTATION OF THE WIGNER DISTRIBUTION FUNCTION BY THE HARTLEY TRANSFORM - APPLICATION TO IMAGE-RESTORATION
    BERRIELVALDOS, LR
    GONZALO, C
    BESCOS, J
    OPTICS COMMUNICATIONS, 1988, 68 (05) : 339 - 344
  • [46] Polynomial Transform algorithms for Multidimensional Discrete Hartley Transform
    Zeng, YH
    Bi, GA
    Leyman, AR
    ISCAS 2000: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - PROCEEDINGS, VOL V: EMERGING TECHNOLOGIES FOR THE 21ST CENTURY, 2000, : 517 - 520
  • [47] Comparison of computational costs of Hartley transform and Fourier transform
    Averchenko, Artem. P.
    Zhenatov, Bekin D.
    2016 13TH INTERNATIONAL SCIENTIFIC-TECHNICAL CONFERENCE ON ACTUAL PROBLEMS OF ELECTRONIC INSTRUMENT ENGINEERING (APEIE), VOL 1, 2016, : 436 - 438
  • [48] A fast running Hartley transform algorithm and its application in adaptive signal enhancement
    Lin, ZY
    Yin, FL
    McCallum, RW
    2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 189 - 192
  • [49] IMPROVED FOURIER AND HARTLEY TRANSFORM ALGORITHMS - APPLICATION TO CYCLIC CONVOLUTION OF REAL DATA
    DUHAMEL, P
    VETTERLI, M
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1987, 35 (06): : 818 - 824
  • [50] Fractional Hartley Transform and its Inverse
    Gaikwad, Vasant
    BAGHDAD SCIENCE JOURNAL, 2023, 20 (01) : 339 - 344