Hartley transform for integrable Boehmians

被引:4
|
作者
Loonker, Deshna [2 ]
Banerjia, P. K. [2 ]
Debnath, Lokenath [1 ]
机构
[1] Univ Texas Pan Amer, Dept Math, Edinburg, TX 78539 USA
[2] Jai Narain Vyas Univ, Fac Sci, Dept Math, Jodhpur 342005, Rajasthan, India
关键词
Hartley transform; distribution space; integrable Boehmian; convolution;
D O I
10.1080/10652460903360903
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present article, we studied the properties of the Hartley transform for integrable Boehmian and proved its inversion.
引用
收藏
页码:459 / 464
页数:6
相关论文
共 50 条
  • [1] Hartley transform for tempered Boehmians
    Loonker, Deshna
    Banerji, P. K.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2011, 81A : 23 - 28
  • [2] Z - transform for integrable Boehmians
    Loonker, Deshna
    TBILISI MATHEMATICAL JOURNAL, 2020, 13 (02) : 179 - 185
  • [3] Fourier transform on integrable Boehmians
    Karunakaran, V.
    Ganesan, C.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2009, 20 (12) : 937 - 941
  • [4] RIDGELET TRANSFORM ON SQUARE INTEGRABLE BOEHMIANS
    Roopkumar, Rajakumar
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (05) : 835 - 844
  • [5] Wavelet Transform of Fractional Integrals for Integrable Boehmians
    Loonker, Deshna
    Banerji, P. K.
    Kalla, S. L.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2010, 5 (01): : 1 - 10
  • [6] Fractional Integrals of Fractional Fourier Transform for Integrable Boehmians
    Singh, Abhishek
    Banerji, P. K.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2018, 88 (01) : 49 - 53
  • [7] Fractional Integrals of Fractional Fourier Transform for Integrable Boehmians
    Abhishek Singh
    P. K. Banerji
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2018, 88 : 49 - 53
  • [8] Wavelet transforms for integrable Boehmians
    Banerji, PK
    Loonker, D
    Debnath, L
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 296 (02) : 473 - 478
  • [9] Boehmians and Fourier transform
    Karunakaran, V
    Kalpakam, NV
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2000, 9 (03) : 197 - 216
  • [10] On the Wavelet Transform for Boehmians
    Abhishek Singh
    Aparna Rawat
    Shubha Singh
    P. K. Banerji
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2022, 92 : 331 - 336