Diffusion tensor imaging with multiple diffusion-weighted gradient directions

被引:0
|
作者
Shan Jiang1
机构
基金
中国国家自然科学基金;
关键词
diffusion tensor imaging; neural tissue; tensor matrix; multiple linear regression; condition number;
D O I
暂无
中图分类号
R445.2 [核磁共振成像];
学科分类号
100207 ;
摘要
Diffusion tensor MRI(DT-MRI or DTI) is emerging as an important non-invasive technology for elucidating internal brain structures.It has recently been utilized to diagnose a series of diseases that affect the integrity of neural systems to provide a basis for neuroregenerative studies.Results from the present study suggested that neural tissue is reconstructed with multiple diffusion-weighted gradient directions DTI,which varies from traditional imaging methods that utilize 6 gradient directions.Simultaneously,the diffusion tensor matrix is obtained by multiple linear regressions from an equation of echo signal intensity.The condition number value and standard deviation of fractional anisotropy for each scheme can be used to evaluate image quality.Results demonstrated that increasing gradient direction to some extent resulted in improved effects.Therefore,the traditional 6 and 15 directions should not be considered optimal scan protocols for clinical DTI application.In a scheme with 20 directions,the condition number and standard deviation of fractional anisotropy of the encoding gradients matrix were significantly reduced,and resulted in more clearly and accurately displayed neural tissue.Results demonstrated that the scheme with 20 diffusion gradient directions provided better accuracy of structural renderings and could be an optimal scan protocol for clinical DTI application.
引用
收藏
页码:66 / 71
页数:6
相关论文
共 50 条
  • [31] Parallel imaging and diffusion tensor imaging for diffusion-weighted MRI of the liver: Preliminary experience in healthy volunteers
    Taouli, B
    Martini, AJ
    Qayyum, A
    Merriman, RB
    Vigneron, D
    Yeh, BM
    Coakley, FV
    [J]. AMERICAN JOURNAL OF ROENTGENOLOGY, 2004, 183 (03) : 677 - 680
  • [32] Improved correction for gradient nonlinearity effects in diffusion-weighted imaging
    Tan, Ek T.
    Marinelli, Luca
    Slavens, Zachary W.
    King, Kevin F.
    Hardy, Christopher J.
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2013, 38 (02) : 448 - 453
  • [33] Diffusion-Weighted Imaging of the Abdomen: Correction for Gradient Nonlinearity Bias in Apparent Diffusion Coefficient
    Wang, Jian
    Ma, Chao
    Yang, Panpan
    Wang, Zhen
    Chen, Yufei
    Bian, Yun
    Shao, Chengwei
    Lu, Jianping
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 58 (01) : 223 - 231
  • [34] Diffusion-weighted imaging of the orbit
    Tejani, A. S.
    Berson, E.
    Phillip, J.
    Feltrin, F. S.
    Bazan, C.
    Raj, K. M.
    Agarwal, A. K.
    Maldjian, J. A.
    Lee, W. -C.
    Yu, F. F.
    [J]. CLINICAL RADIOLOGY, 2024, 79 (01) : 10 - 18
  • [35] Diffusion-Weighted Genitourinary Imaging
    Maurer, Martin H.
    Haermae, Kirsi Hannele
    Thoeny, Harriet
    [J]. UROLOGIC CLINICS OF NORTH AMERICA, 2018, 45 (03) : 407 - +
  • [36] Hypoglycemia and diffusion-weighted imaging
    Chan, R
    Erbay, S
    Oljeski, S
    Thaler, D
    Bhadelia, R
    [J]. JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2003, 27 (03) : 420 - 423
  • [37] Diffusion-weighted imaging of cerebritis
    Tung, GA
    Rogg, JM
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2003, 24 (06) : 1110 - 1113
  • [38] Diffusion-Weighted Imaging of the Chest
    Luna, Antonio
    Sanchez-Gonzalez, Javier
    Caro, Pilar
    [J]. MAGNETIC RESONANCE IMAGING CLINICS OF NORTH AMERICA, 2011, 19 (01) : 69 - +
  • [39] Diffusion-weighted imaging in neuroradiology
    Schlamann, M.
    [J]. RADIOLOGE, 2011, 51 (03): : 180 - 185
  • [40] Advances in Diffusion-Weighted Imaging
    Mannelli, Lorenzo
    Nougaret, Stephanie
    Vargas, Hebert A.
    Do, Richard K. G.
    [J]. RADIOLOGIC CLINICS OF NORTH AMERICA, 2015, 53 (03) : 569 - +