PeLK: Parameter-efficient Large Kernel ConvNets with Peripheral Convolution

被引:10
|
作者
Chen, Honghao [1 ,2 ,5 ]
Chu, Xiangxiang [3 ]
Ren, Yongjian [1 ,2 ]
Zhao, Xin [1 ,2 ]
Huang, Kaiqi [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
[3] Meituan, Beijing, Peoples R China
[4] CAS Ctr Excellence Brain Sci & Intelligence Techn, Beijing, Peoples R China
[5] Meituan Inc, Beijing, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
D O I
10.1109/CVPR52733.2024.00531
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, some large kernel convnets strike back with appealing performance and efficiency. However, given the square complexity of convolution, scaling up kernels can bring about an enormous amount of parameters and the proliferated parameters can induce severe optimization problem. Due to these issues, current CNNs compromise to scale up to 51 x 51 in the form of stripe convolution ( i.e., 51 x 5 + 5 x 51) and start to saturate as the kernel size continues growing. In this paper, we delve into addressing these vital issues and explore whether we can continue scaling up kernels for more performance gains. Inspired by human vision, we propose a human-like peripheral convolution that efficiently reduces over 90% parameter count of dense grid convolution through parameter sharing, and manage to scale up kernel size to extremely large. Our peripheral convolution behaves highly similar to human, reducing the complexity of convolution from O(K-2) to O(log K) without backfiring performance. Built on this, we propose Parameter-efficient Large Kernel Network (PeLK). Our PeLK outperforms modern vision Transformers and ConvNet architectures like Swin, ConvNeXt, RepLKNet and SLaK on various vision tasks including ImageNet classification, semantic segmentation on ADE20K and object detection on MS COCO. For the first time, we successfully scale up the kernel size of CNNs to an unprecedented 101 x 101 and demonstrate consistent improvements.
引用
收藏
页码:5557 / 5567
页数:11
相关论文
共 50 条
  • [41] LPNet: A remote sensing scene classification method based on large kernel convolution and parameter fusion
    Wang, Guowei
    Shi, Furong
    Wang, Xinyu
    Xu, Haixia
    Yuan, Liming
    Wen, Xianbin
    IET IMAGE PROCESSING, 2024, 18 (09) : 2417 - 2433
  • [42] MiniALBERT: Model Distillation via Parameter-Efficient Recursive Transformers
    Nouriborji, Mohammadmahdi
    Rohanian, Omid
    Kouchaki, Samaneh
    Clifton, David A.
    17TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EACL 2023, 2023, : 1161 - 1173
  • [43] A Gradient Control Method for Backdoor Attacks on Parameter-Efficient Tuning
    Gu, Naibin
    Fu, Peng
    Liu, Xiyu
    Liu, Zhengxiao
    Lin, Zheng
    Wang, Weiping
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 1, 2023, : 3508 - 3520
  • [44] Conditional Adapters: Parameter-efficient Transfer Learning with Fast Inference
    Lei, Tao
    Bai, Junwen
    Brahma, Siddhartha
    Ainslie, Joshua
    Lee, Kenton
    Zhou, Yanqi
    Du, Nan
    Zhao, Vincent Y.
    Wu, Yuexin
    Li, Bo
    Zhang, Yu
    Chang, Ming-Wei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [45] Parameter-efficient online knowledge distillation for pretrained language models
    Wang, Yukun
    Wang, Jin
    Zhang, Xuejie
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 265
  • [46] Parameter-efficient fine-tuning of large-scale pre-trained language models
    Ning Ding
    Yujia Qin
    Guang Yang
    Fuchao Wei
    Zonghan Yang
    Yusheng Su
    Shengding Hu
    Yulin Chen
    Chi-Min Chan
    Weize Chen
    Jing Yi
    Weilin Zhao
    Xiaozhi Wang
    Zhiyuan Liu
    Hai-Tao Zheng
    Jianfei Chen
    Yang Liu
    Jie Tang
    Juanzi Li
    Maosong Sun
    Nature Machine Intelligence, 2023, 5 : 220 - 235
  • [47] LLM-Adapters: An Adapter Family for Parameter-Efficient Fine-Tuning of Large Language Models
    Hu, Zhiqiang
    Wang, Lei
    Lan, Yihuai
    Xu, Wanyu
    Lim, Ee-Peng
    Bing, Lidong
    Xu, Xing
    Poria, Soujanya
    Lee, Roy Ka-Wei
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, EMNLP 2023, 2023, : 5254 - 5276
  • [48] Efficient Multi-Lane Detection Based on Large-Kernel Convolution and Location
    Li, Shoubiao
    Wu, Xin
    Wu, Zhifei
    IEEE ACCESS, 2023, 11 : 58125 - 58135
  • [49] DiffFit: Unlocking Transferability of Large Diffusion Models via Simple Parameter-Efficient Fine-Tuning
    Xie, Enze
    Yao, Lewei
    Shi, Han
    Liu, Zhili
    Zhou, Daquan
    Liu, Zhaoqiang
    Li, Jiawei
    Li, Zhenguo
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 4207 - 4216
  • [50] Parameter-efficient fine-tuning of large-scale pre-trained language models
    Ding, Ning
    Qin, Yujia
    Yang, Guang
    Wei, Fuchao
    Yang, Zonghan
    Su, Yusheng
    Hu, Shengding
    Chen, Yulin
    Chan, Chi-Min
    Chen, Weize
    Yi, Jing
    Zhao, Weilin
    Wang, Xiaozhi
    Liu, Zhiyuan
    Zheng, Hai-Tao
    Chen, Jianfei
    Liu, Yang
    Tang, Jie
    Li, Juanzi
    Sun, Maosong
    NATURE MACHINE INTELLIGENCE, 2023, 5 (03) : 220 - +