PeLK: Parameter-efficient Large Kernel ConvNets with Peripheral Convolution

被引:10
|
作者
Chen, Honghao [1 ,2 ,5 ]
Chu, Xiangxiang [3 ]
Ren, Yongjian [1 ,2 ]
Zhao, Xin [1 ,2 ]
Huang, Kaiqi [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
[3] Meituan, Beijing, Peoples R China
[4] CAS Ctr Excellence Brain Sci & Intelligence Techn, Beijing, Peoples R China
[5] Meituan Inc, Beijing, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
D O I
10.1109/CVPR52733.2024.00531
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, some large kernel convnets strike back with appealing performance and efficiency. However, given the square complexity of convolution, scaling up kernels can bring about an enormous amount of parameters and the proliferated parameters can induce severe optimization problem. Due to these issues, current CNNs compromise to scale up to 51 x 51 in the form of stripe convolution ( i.e., 51 x 5 + 5 x 51) and start to saturate as the kernel size continues growing. In this paper, we delve into addressing these vital issues and explore whether we can continue scaling up kernels for more performance gains. Inspired by human vision, we propose a human-like peripheral convolution that efficiently reduces over 90% parameter count of dense grid convolution through parameter sharing, and manage to scale up kernel size to extremely large. Our peripheral convolution behaves highly similar to human, reducing the complexity of convolution from O(K-2) to O(log K) without backfiring performance. Built on this, we propose Parameter-efficient Large Kernel Network (PeLK). Our PeLK outperforms modern vision Transformers and ConvNet architectures like Swin, ConvNeXt, RepLKNet and SLaK on various vision tasks including ImageNet classification, semantic segmentation on ADE20K and object detection on MS COCO. For the first time, we successfully scale up the kernel size of CNNs to an unprecedented 101 x 101 and demonstrate consistent improvements.
引用
收藏
页码:5557 / 5567
页数:11
相关论文
共 50 条
  • [31] PetS: A Unified Framework for Parameter-Efficient Transformers Serving
    Zhou, Zhe
    Wei, Xuechao
    Zhang, Jiejing
    Sun, Guangyu
    PROCEEDINGS OF THE 2022 USENIX ANNUAL TECHNICAL CONFERENCE, 2022, : 489 - 504
  • [32] Exploring the Impact of Model Scaling on Parameter-efficient Tuning
    Su, Yusheng
    Chan, Chi-Min
    Chen, Jiali
    Qin, Yujia
    Lin, Yankai
    Hu, Shengding
    Yang, Zonghan
    Ding, Ning
    Sun, Xingzhi
    Xu, Guotong
    Liu, Zhiyuan
    Sun, Maosong
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2023), 2023, : 15062 - 15078
  • [33] Parameter-efficient framework for surgical action triplet recognition
    Li, Yuchong
    Bai, Bizhe
    Jia, Fucang
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2024, 19 (07) : 1291 - 1299
  • [34] Parameter-efficient fine-tuning of large language models using semantic knowledge tuning
    Prottasha, Nusrat Jahan
    Mahmud, Asif
    Sobuj, Md. Shohanur Islam
    Bhat, Prakash
    Kowsher, Md
    Yousefi, Niloofar
    Garibay, Ozlem Ozmen
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [35] Prompt tuning for parameter-efficient medical image segmentation
    Fischer, Marc
    Bartler, Alexander
    Yang, Bin
    MEDICAL IMAGE ANALYSIS, 2024, 91
  • [36] Parameter-Efficient and Student-Friendly Knowledge Distillation
    Rao, Jun
    Meng, Xv
    Ding, Liang
    Qi, Shuhan
    Liu, Xuebo
    Zhang, Min
    Tao, Dacheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 4230 - 4241
  • [37] A Parameter-efficient Language Extension Framework for Multilingual ASR
    Liu, Wei
    Hou, Jingyong
    Yang, Dong
    Cao, Muyong
    Lee, Tan
    INTERSPEECH 2024, 2024, : 3929 - 3933
  • [38] Parameter-Efficient Deep Neural Networks With Bilinear Projections
    Yu, Litao
    Gao, Yongsheng
    Zhou, Jun
    Zhang, Jian
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (09) : 4075 - 4085
  • [39] Parameter-efficient Modularised Bias Mitigation via AdapterFusion
    Kumar, Deepak
    Lesota, Oleg
    Zerveas, George
    Cohen, Daniel
    Eickhoff, Carsten
    Schedl, Markus
    Rekabsaz, Navid
    17TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EACL 2023, 2023, : 2738 - 2751
  • [40] Parameter-Efficient Finetuning for Robust Continual Multilingual Learning
    Badola, Kartikeya
    Dave, Shachi
    Talukdar, Partha
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023), 2023, : 9763 - 9780