The LET enhancement of energy-specific collimation in pencil beam scanning proton therapy

被引:0
|
作者
Smith, Blake R. [1 ]
Hyer, Daniel E. [1 ]
机构
[1] Univ Iowa, Dept Radiat Oncol, Iowa City, IA 52242 USA
来源
基金
美国国家卫生研究院;
关键词
collimation; LET; PBS; protons; RBE; RELATIVE BIOLOGICAL EFFECTIVENESS; MONTE-CARLO-SIMULATION; DYNAMIC COLLIMATION; MODEL; HEAD;
D O I
10.1002/acm2.14477
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeTo computationally characterize the LET distribution during dynamic collimation in PBS and quantify its impact on the resultant dose distribution.MethodsMonte Carlo simulations using Geant4 were used to model the production of low-energy proton scatter produced in the collimating components of a novel PBS collimator. Custom spectral tallies were created to quantify the energy, track- and dose-averaged LET resulting from individual beamlet and composite fields simulated from a model of the IBA dedicated nozzle system. The composite dose distributions were optimized to achieve a uniform physical dose coverage of a cubical and pyramidal target, and the resulting dose-average LET distributions were calculated for uncollimated and collimated PBS deliveries and used to generate RBE-weighted dose distributions.ResultsFor collimated beamlets, the scattered proton energy fluence is strongly dependent on collimator position relative to the central axis of the beamlet. When delivering a uniform profile, the distribution of dose-average LET was nearly identical within the target and increased between 1 and 2keV/mu m$2 \,{\rm keV}/\mathrm{\umu }\mathrm{m}$ within 10 mm surrounding the target. Dynamic collimation resulted in larger dose-average LET changes: increasing the dose-average LET between 1 and 3keV/mu m$3 \,{\rm keV}/\mathrm{\umu }\mathrm{m}$ within 10 mm of a pyramidal target while reducing the dose-average LET outside this margin by as much as 10keV/mu m$10 \,{\rm keV}/\mathrm{\umu }\mathrm{m}$. Biological dose distributions are improved with energy-specific collimation in reducing the lateral penumbra.ConclusionThe presence of energy-specific collimation in PBS can lead to dose-average LET changes relative to an uncollimated delivery. In some clinical situations, the placement and application of energy-specific collimation may require additional planning considerations based on its reduction to the lateral penumbra and increase in high-dose conformity. Future applications may embody these unique dosimetric characteristics to redirect high-LET portions of a collimated proton beamlet from healthy tissues while enhancing the dose-average LET distribution within target.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Feasibility of Pencil Beam Scanning Proton Therapy Treatment Planning with a Dynamic Collimation System in an FDA-Cleared TPS
    Bennett, L.
    Smith, B.
    Flynn, R.
    Hyer, D.
    Wang, D.
    MEDICAL PHYSICS, 2019, 46 (06) : E101 - E101
  • [22] Determination of surface dose in pencil beam scanning proton therapy
    Kern, A.
    Baeumer, C.
    Kroeninger, K.
    Mertens, L.
    Timmermann, B.
    Walbersloh, J.
    Wulff, J.
    RADIOTHERAPY AND ONCOLOGY, 2019, 133 : S483 - S483
  • [23] Pencil beam scanning proton therapy for pediatric intracranial ependymoma
    Ares, Carmen
    Albertini, Francesca
    Frei-Welte, Martina
    Bolsi, Alessandra
    Grotzer, Michael A.
    Goitein, Gudrun
    Weber, Damien C.
    JOURNAL OF NEURO-ONCOLOGY, 2016, 128 (01) : 137 - 145
  • [24] Proton Pencil Beam Scanning for Rectal Cancer Radiation Therapy
    Kiely, J. P. Blanco
    White, B. M.
    Plastaras, J. P.
    Ben-Josef, E.
    Varman, C.
    Tang, S.
    Tochner, Z. A.
    Metz, J. M.
    Both, S.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2015, 93 (03): : E159 - E159
  • [25] Pencil beam scanning proton therapy for pediatric intracranial ependymoma
    Carmen Ares
    Francesca Albertini
    Martina Frei-Welte
    Alessandra Bolsi
    Michael A. Grotzer
    Gudrun Goitein
    Damien C. Weber
    Journal of Neuro-Oncology, 2016, 128 : 137 - 145
  • [26] Pencil Beam Proton Flash Therapy, the challenge of scanning.
    Pin, A.
    Hotoiu, L.
    Deffet, S.
    Sterpin, E.
    Labarbe, R.
    RADIOTHERAPY AND ONCOLOGY, 2021, 161 : S747 - S748
  • [27] Clinical Implementation of Pencil Beam Scanning (PBS) Proton Therapy
    Dong, Lei
    Dong, L.
    Zhu, X.
    Pankuch, M.
    Dong, L.
    MEDICAL PHYSICS, 2017, 44 (06) : 3031 - 3032
  • [28] Pencil Beam Scanning Proton Therapy in the Treatment of Rectal Cancer
    Dionisi, F.
    Batra, S.
    Kirk, M.
    Both, S.
    Vennarini, S.
    McDonough, J.
    Metz, J. M.
    Plastaras, J. P.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2013, 87 (02): : S341 - S342
  • [29] Determination of surface dose in pencil beam scanning proton therapy
    Kern, A.
    Baeumer, C.
    Kroeninger, K.
    Mertens, L.
    Timmermann, B.
    Walbersloh, J.
    Wulff, J.
    MEDICAL PHYSICS, 2020, 47 (05) : 2277 - 2288
  • [30] Passive Scattering to Pencil-Beam-Scanning Comparison for Medulloblastoma Proton Therapy: LET Distributions and Radiobiological Implications
    Giantsoudi, D.
    MacDonald, S.
    Paganetti, H.
    MEDICAL PHYSICS, 2014, 41 (06) : 311 - 311