Enhancing reliability in oxide-based memristors using two-dimensional transition metal dichalcogenides

被引:1
|
作者
Lee, Donghyeon [1 ]
Kim, Seung-Mo [2 ]
Park, Jun-Cheol [1 ]
Jung, Yoonsung [1 ]
Lee, Soyeon [1 ]
Lee, Byoung Hun [2 ]
Lee, Sanghan [1 ]
机构
[1] Gwangju Inst Sci & Technol, Sch Mat Sci & Engn, 123 Cheomdangwagi Ro, Gwangju 61005, South Korea
[2] Pohang Univ Sci & Technol, Ctr Semicond Technol Convergence, Dept Elect Engn, 77 Cheongam Ro, Pohang 37673, Gyeongbuk Do, South Korea
基金
新加坡国家研究基金会;
关键词
Resistive switching; Transition metal dichalcogenides; HfxZr1_xO2; Oxygen vacancy filament; MEMORY; UNIFORMITY; DEVICE;
D O I
10.1016/j.apsusc.2024.161216
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Oxide-based memristor is an attractive candidate for future nonvolatile resistive random access memory (RRAM) devices. However, it suffers from insufficient reliability, owing to the randomness of the conductive filaments, hindering the practical use of the memristor for future RRAM applications. Here, we propose harnessing the twodimensional (2D) transition metal dichalcogenides (TMDs) on oxide memristor to achieve high device reliability by controlling oxygen vacancy-based filaments near the TMDs/oxide interface. By forming the Pt/WSe2/ HfxZr1-xO2 (HZO)/TiN structure, the fabricated memristor exhibits high reliability with good cyclic endurance (over 2,000 cycles), retention (104 s), and low cycle-to-cycle variability. Surface chemical analysis reveals the abundant oxygen vacancies induced by forming WSe2/HZO interface are the source of filamentary switching. By incorporating 2D materials and oxides, the practical application of memristor to future information processing devices can be boosted by the enhanced device reliability.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Thermoelectric properties of two-dimensional transition metal dichalcogenides
    Zhang, Gang
    Zhang, Yong-Wei
    JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (31) : 7684 - 7698
  • [32] Excitonic Complexes in Two-Dimensional Transition Metal Dichalcogenides
    Xiaotong Chen
    Zhen Lian
    Yuze Meng
    Lei Ma
    Su-Fei Shi
    Nature Communications, 14
  • [33] Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
    Qing Hua Wang
    Kourosh Kalantar-Zadeh
    Andras Kis
    Jonathan N. Coleman
    Michael S. Strano
    Nature Nanotechnology, 2012, 7 : 699 - 712
  • [34] Integrated Freestanding Two-dimensional Transition Metal Dichalcogenides
    Jeong, Hyun
    Oh, Hye Min
    Gokarna, Anisha
    Kim, Hyun
    Yun, Seok Joon
    Han, Gang Hee
    Jeong, Mun Seok
    Lee, Young Hee
    Lerondel, Gilles
    ADVANCED MATERIALS, 2017, 29 (18)
  • [35] Photoluminescence manipulation in two-dimensional transition metal dichalcogenides
    Gao, Minglang
    Yu, Lingxiao
    Lv, Qian
    Kang, Feiyu
    Huang, Zheng-Hong
    Lv, Ruitao
    JOURNAL OF MATERIOMICS, 2023, 9 (04) : 768 - 786
  • [36] Functionalization of Two-Dimensional Transition-Metal Dichalcogenides
    Chen, Xin
    McDonald, Aidan R.
    ADVANCED MATERIALS, 2016, 28 (27) : 5738 - 5746
  • [37] The Recent Progress of Two-Dimensional Transition Metal Dichalcogenides and Their Phase Transition
    Chen, Hui
    Zhang, Jiwei
    Kan, Dongxiao
    He, Jiabei
    Song, Mengshan
    Pang, Jianhua
    Wei, Songrui
    Chen, Kaiyun
    CRYSTALS, 2022, 12 (10)
  • [38] Critical challenges in the development of electronics based on two-dimensional transition metal dichalcogenides
    Wang, Yan
    Sarkar, Soumya
    Yan, Han
    Chhowalla, Manish
    NATURE ELECTRONICS, 2024, 7 (08): : 638 - 645
  • [39] Metal-Site Dopants in Two-Dimensional Transition Metal Dichalcogenides
    Williamson, I
    Lawson, M.
    Li, S.
    Chen, Y.
    Li, L.
    2019 IEEE WORKSHOP ON MICROELECTRONICS AND ELECTRON DEVICES (WMED), 2019, : 5 - 9
  • [40] Recent progress on Schottky sensors based on two-dimensional transition metal dichalcogenides
    Li, Qi
    Meng, Jianping
    Li, Zhou
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (15) : 8107 - 8128