Enhancing reliability in oxide-based memristors using two-dimensional transition metal dichalcogenides

被引:1
|
作者
Lee, Donghyeon [1 ]
Kim, Seung-Mo [2 ]
Park, Jun-Cheol [1 ]
Jung, Yoonsung [1 ]
Lee, Soyeon [1 ]
Lee, Byoung Hun [2 ]
Lee, Sanghan [1 ]
机构
[1] Gwangju Inst Sci & Technol, Sch Mat Sci & Engn, 123 Cheomdangwagi Ro, Gwangju 61005, South Korea
[2] Pohang Univ Sci & Technol, Ctr Semicond Technol Convergence, Dept Elect Engn, 77 Cheongam Ro, Pohang 37673, Gyeongbuk Do, South Korea
基金
新加坡国家研究基金会;
关键词
Resistive switching; Transition metal dichalcogenides; HfxZr1_xO2; Oxygen vacancy filament; MEMORY; UNIFORMITY; DEVICE;
D O I
10.1016/j.apsusc.2024.161216
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Oxide-based memristor is an attractive candidate for future nonvolatile resistive random access memory (RRAM) devices. However, it suffers from insufficient reliability, owing to the randomness of the conductive filaments, hindering the practical use of the memristor for future RRAM applications. Here, we propose harnessing the twodimensional (2D) transition metal dichalcogenides (TMDs) on oxide memristor to achieve high device reliability by controlling oxygen vacancy-based filaments near the TMDs/oxide interface. By forming the Pt/WSe2/ HfxZr1-xO2 (HZO)/TiN structure, the fabricated memristor exhibits high reliability with good cyclic endurance (over 2,000 cycles), retention (104 s), and low cycle-to-cycle variability. Surface chemical analysis reveals the abundant oxygen vacancies induced by forming WSe2/HZO interface are the source of filamentary switching. By incorporating 2D materials and oxides, the practical application of memristor to future information processing devices can be boosted by the enhanced device reliability.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Strain regulation of two-dimensional transition metal dichalcogenides
    Zhou, Lu
    Fu, Lei
    CHINESE SCIENCE BULLETIN-CHINESE, 2019, 64 (17): : 1817 - 1831
  • [22] Phase Engineering of Two-Dimensional Transition Metal Dichalcogenides
    Kim, Jong Hun
    Sung, Hayeong
    Lee, Gwan-Hyoung
    SMALL SCIENCE, 2024, 4 (01):
  • [23] Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
    Wang, Qing Hua
    Kalantar-Zadeh, Kourosh
    Kis, Andras
    Coleman, Jonathan N.
    Strano, Michael S.
    NATURE NANOTECHNOLOGY, 2012, 7 (11) : 699 - 712
  • [24] Phase Engineering of Two-Dimensional Transition Metal Dichalcogenides
    Qian, Ziyue
    Jiao, Liying
    Xie, Liming
    CHINESE JOURNAL OF CHEMISTRY, 2020, 38 (07) : 753 - 760
  • [25] Defect repairing in two-dimensional transition metal dichalcogenides
    Zeng, Shiyan
    Li, Fang
    Tan, Chao
    Yang, Lei
    Wang, Zegao
    FRONTIERS OF PHYSICS, 2023, 18 (05)
  • [26] Strong correlations in two-dimensional transition metal dichalcogenides
    Wei Ruan
    Yuanbo Zhang
    ScienceChina(Physics,Mechanics&Astronomy), 2023, (11) : 81 - 95
  • [27] Recent progress in two-dimensional transition metal dichalcogenides
    Li, Peiling
    Cui, Jian
    Zhou, Jiadong
    Wang, Hong
    Liu, Zheng
    Qu, Fanming
    Yang, Changli
    Jing, Xiunian
    Lu, Li
    Liu, Guangtong
    CHINESE SCIENCE BULLETIN-CHINESE, 2020, 65 (10): : 882 - 903
  • [28] Phase engineering of two-dimensional transition metal dichalcogenides
    Xiao, Yao
    Zhou, Mengyue
    Liu, Jinglu
    Xu, Jing
    Fu, Lei
    SCIENCE CHINA-MATERIALS, 2019, 62 (06) : 759 - 775
  • [29] Strong correlations in two-dimensional transition metal dichalcogenides
    Ruan, Wei
    Zhang, Yuanbo
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2023, 66 (11)
  • [30] Defect Engineering of Two-Dimensional Transition Metal Dichalcogenides
    Li Jing-Tao
    Ma Yang
    Li Shao-Xian
    He Ye-Ming
    Zhang Yong-Zhe
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2022, 38 (06) : 993 - 1015