Research on Network Flow Anomaly Identification and Detection Model based on Deep Learning

被引:0
|
作者
Wan, Yidan [1 ]
Zhang, Deqing [1 ]
Liu, Zhihui [2 ]
机构
[1] Anhui Sanlian Univ, Modern Ind Coll Intelligent Transportat, Hefei, Peoples R China
[2] Anhui Sanlian Univ, Ind Coll Model Wellness, Hefei, Peoples R China
关键词
Network abnormal traffic detection; CVAE; LSTM; deep learning; classification;
D O I
10.1145/3662739.3662742
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, the network scale is gradually expanding, and the number of netizens is constantly increasing. With the rapid development of the network in the direction of diversification, the traditional intrusion detection system (IDS) has problems such as low accuracy and high false alarm rate, which are difficult to guarantee the current network security. In this paper, the author proposes a method that combines conditional variational autoencoder (CVAE) and long-short-term memory (LSTM) network to identify and detect abnormal flow, and then some key technologies of traffic detection model is discussed. At present, the main problems in network traffic anomaly detection include imbalanced data distribution and low detection efficiency of traditional models. Due to the fact that most network detection data often has the characteristics of a small number of attack category samples and imbalanced data distribution, CVAE is used to enhance and expand the attack samples to obtain balanced data samples in this paper, and then the LSTM network is used for anomaly identification and detection. In order to prove the superiority of the model, the author evaluates the model through the accuracy, precision, recall and F1. Compared with traditional machine learning methods, the model has higher accuracy and lower training complexity.
引用
收藏
页码:710 / 716
页数:7
相关论文
共 50 条
  • [41] Research on the Anomaly Detection of Flow Streaming Technology in Network
    Si Jin
    Sun Guochun
    Zhang Chunhua
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON MECHATRONICS, MATERIALS, CHEMISTRY AND COMPUTER ENGINEERING 2015 (ICMMCCE 2015), 2015, 39 : 1834 - 1837
  • [42] FlowGANAnomaly: Flow-Based Anomaly Network Intrusion Detection with Adversarial Learning
    Li, Zeyi
    Wang, Pan
    Wang, Zixuan
    Zhan, De-chuan
    CHINESE JOURNAL OF ELECTRONICS, 2024, 33 (01) : 58 - 71
  • [43] FlowGANAnomaly: Flow-Based Anomaly Network Intrusion Detection with Adversarial Learning
    Zeyi LI
    Pan WANG
    Zixuan WANG
    Chinese Journal of Electronics, 2024, 33 (01) : 58 - 71
  • [44] Network Traffic Risk Identification Based on Deep Learning Model
    Zhai, Weinan
    Liu, Siqi
    Yu, Yue
    An, Wei
    Yu, Jianjun
    Zhang, Lingling
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT VIII, ICIC 2024, 2024, 14869 : 449 - 460
  • [45] Optimal deep learning based object detection for pedestrian and anomaly recognition model
    Allabaksh Shaik
    Shaik Mahaboob Basha
    International Journal of Information Technology, 2024, 16 (7) : 4721 - 4728
  • [46] An Evolutionary Deep Learning-Based Anomaly Detection Model for Securing Vehicles
    Kavousi-Fard, Abdollah
    Dabbaghjamanesh, Morteza
    Jin, Tao
    Su, Wencong
    Roustaei, Mahmoud
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (07) : 4478 - 4486
  • [47] ADS-B anomaly data detection model based on deep learning
    Ding, Jianli
    Zou, Yunkai
    Wang, Jing
    Wang, Huaichao
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2019, 40 (12):
  • [48] LogCTBL: a hybrid deep learning model for log-based anomaly detection
    Huang, Hong
    Luo, Wengang
    Wang, Yunfei
    Zhou, Yinghang
    Huang, Weitao
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (02):
  • [49] Semi-supervised Deep Learning for Network Anomaly Detection
    Sun, Yuanyuan
    Guo, Lili
    Li, Ye
    Xu, Lele
    Wang, Yongming
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2019, PT II, 2020, 11945 : 383 - 390
  • [50] Deep learning-based network anomaly detection and classification in an imbalanced cloud environment
    Vibhute, Amol D.
    Nakum, Vikram
    5TH INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING, ISM 2023, 2024, 232 : 1636 - 1645