Semi-supervised Deep Learning for Network Anomaly Detection

被引:1
|
作者
Sun, Yuanyuan [1 ,2 ,3 ]
Guo, Lili [3 ]
Li, Ye [3 ]
Xu, Lele [3 ]
Wang, Yongming [2 ]
机构
[1] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
[2] Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
[3] Chinese Acad Sci, Technol & Engn Ctr Space Utilizat, Key Lab Space Utilizat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; Network anomaly detection; Auto-encoder; LSTM; BiGAN; Regular GAN; WGAN;
D O I
10.1007/978-3-030-38961-1_33
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning promotes the fields of image processing, machine translation and natural language processing etc. It also can be used in network anomaly detection. In practice, it is not hard to obtain normal instances. However, it is always difficult to label anomalous instances. Semi-supervised learning can be utilized to resolve this problem. In this paper, we make a comprehensive study of semi-supervised deep learning techniques for network anomaly detection. Three kinds of deep learning techniques including GAN (Generative Adversarial networks), Auto-encoder and LSTM (Long Short-Term Memory) are studied on the latest network traffic dataset of CICIDS2017. Five deep architectures based on semi-supervised learning are designed, including BiGAN, regular GAN, WGAN, Auto-encoder and LSTM. Seven schemes of semi-supervised deep learning for anomaly detection are proposed according to different functions of anomaly score. Grid search is utilized to find the threshold of anomaly detection. Two traditional schemes of machine learning are also adopted to compare performance. There are altogether nine schemes of anomaly detection for CICIDS2017. From results of the experiment for network anomaly detection, it can be found that Auto-encoder outperforms LSTM and the three kinds of GAN. BiGAN and LSTM are both better than WGAN and regular GAN. All the seven schemes of semi-supervised deep learning for anomaly detection outperform the two traditional schemes. The work and results in this paper are meaningful on the application of semi-supervised deep learning for network anomaly detection.
引用
收藏
页码:383 / 390
页数:8
相关论文
共 50 条
  • [1] Semi-supervised Anomaly Detection with Reinforcement Learning
    Lee, Changheon
    Kim, JoonKyu
    Kang, Suk-Ju
    [J]. 2022 37TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2022), 2022, : 933 - 936
  • [2] A Semi-Supervised Learning Approach to IEEE 802.11 Network Anomaly Detection
    Ran, Jing
    Ji, Yidong
    Tang, Bihua
    [J]. 2019 IEEE 89TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2019-SPRING), 2019,
  • [3] A Semi-Supervised Learning Approach for Network Anomaly Detection in Fog Computing
    Xu, Shengjie
    Qian, Yi
    Hu, Rose Qingyang
    [J]. ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [4] Robust and Explainable Semi-Supervised Deep Learning Model for Anomaly Detection in Aviation
    Memarzadeh, Milad
    Asanjan, Ata Akbari
    Matthews, Bryan
    [J]. AEROSPACE, 2022, 9 (08)
  • [5] Semi-Supervised Time Series Anomaly Detection Based on Statistics and Deep Learning
    Jiang, Jehn-Ruey
    Kao, Jian-Bin
    Li, Yu-Lin
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (15):
  • [6] Traffic Anomaly Detection Using Deep Semi-Supervised Learning at the Mobile Edge
    Pelati, Annalisa
    Meo, Michela
    Dini, Paolo
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (08) : 8919 - 8932
  • [7] A Deep-Convolutional-Neural-Network-Based Semi-Supervised Learning Method for Anomaly Crack Detection
    Gao, Xingjun
    Huang, Chuansheng
    Teng, Shuai
    Chen, Gongfa
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (18):
  • [8] Network anomaly detection based on semi-supervised clustering
    Wei Xiaotao
    Huang Houkuan
    Tian Shengfeng
    [J]. NEW ADVANCES IN SIMULATION, MODELLING AND OPTIMIZATION (SMO '07), 2007, : 440 - +
  • [9] A SEMI-SUPERVISED MODEL FOR NETWORK TRAFFIC ANOMALY DETECTION
    Nguyen Ha Duong
    Hoang Dang Hai
    [J]. 2015 17TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY (ICACT), 2015, : 70 - 75
  • [10] Semi-Supervised Statistical Approach for Network Anomaly Detection
    Aissa, Naila Belhadj
    Guerroumia, Mohamed
    [J]. 7TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT 2016) / THE 6TH INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY INFORMATION TECHNOLOGY (SEIT-2016) / AFFILIATED WORKSHOPS, 2016, 83 : 1090 - 1095