Matrices with hyperbolical Krein space numerical range

被引:0
|
作者
Bebiano, N. [1 ,2 ]
Lemos, R. [3 ,4 ]
Soares, G. [5 ,6 ]
机构
[1] Univ Coimbra, CMUC, P-3001501 Coimbra, Portugal
[2] Univ Coimbra, Math Dept, P-3001501 Coimbra, Portugal
[3] Univ Aveiro, CIDMA, P-3810193 Aveiro, Portugal
[4] Univ Aveiro, Math Dept, P-3810193 Aveiro, Portugal
[5] Univ Tras Os Montes & Alto Douro, CMAT UTAD, P-5000801 Vila Real, Portugal
[6] Univ Tras Os Montes & Alto Douro, Math Dept, P-5000801 Vila Real, Portugal
关键词
Numerical range; Krein space; Centrosymmetric matrices; Tridiagonal matrices; Hyperbolical range theorem; KIPPENHAHN CURVES; OPERATORS; GEOMETRY;
D O I
10.1007/s43036-024-00399-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to matrices with hyperbolical Krein space numerical range. This shape characterizes the 2-by-2 case and persists for certain classes of matrices, independently of their size. Necessary and sufficient conditions for low dimensional tridiagonal matrices to have this shape are obtained involving only the matrix entries.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] The higher rank numerical range of nonnegative matrices
    Aretaki, Aikaterini
    Maroulas, Ioannis
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (03): : 435 - 446
  • [42] On the numerical range of matrices over a finite field
    Ballico, E.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 512 : 162 - 171
  • [43] Indefinite numerical range of 3 × 3 matrices
    N. Bebiano
    J. da Providência
    R. Teixeira
    Czechoslovak Mathematical Journal, 2009, 59 : 221 - 239
  • [44] Sets of matrices with given joint numerical range
    Krupnik, Naum
    Spitkovsky, Ilya M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 419 (2-3) : 569 - 585
  • [45] APPROXIMATION OF THE NUMERICAL RANGE OF POLYNOMIAL OPERATOR MATRICES
    Muhammad, Ahmed
    OPERATORS AND MATRICES, 2021, 15 (03): : 1073 - 1087
  • [46] Field quantization in Krein space
    Payandeh, F.
    Mehrafarin, M.
    Takook, M. V.
    PARTICLES, STRINGS, AND COSMOLOGY, 2007, 957 : 249 - +
  • [47] DEFINITIZABLE OPERATORS ON A KREIN SPACE
    ZIZLER, P
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1995, 38 (04): : 496 - 506
  • [48] A VARIATIONAL PRINCIPLE IN KREIN SPACE
    BINDING, P
    NAJMAN, B
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 342 (02) : 489 - 499
  • [49] QED in Krein Space Quantization
    A. Zarei
    B. Forghan
    M. V. Takook
    International Journal of Theoretical Physics, 2011, 50 : 2466 - 2476
  • [50] QED in Krein Space Quantization
    Zarei, A.
    Forghan, B.
    Takook, M. V.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (08) : 2466 - 2476