The deformation spaces of geodesic triangulations of flat tori

被引:0
|
作者
Luo, Yanwen [1 ]
Wu, Tianqi [2 ]
Zhu, Xiaoping [1 ]
机构
[1] Rutgers State Univ, Dept Math, New Brunswick, NJ 08901 USA
[2] Harvard Univ, Ctr Math Sci & Applicat, Cambridge, MA USA
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2024年 / 24卷 / 07期
关键词
D O I
10.2140/agt.2024.24.3605
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the deformation space of geodesic triangulations of a flat torus is homotopically equivalent to a torus. This solves an open problem proposed by Connelly et al. in 1983 in the case of flat tori. A key tool of the proof is a generalization of Tutte's embedding theorem for flat tori. While this paper was under preparation, Erickson and Lin proved a similar result, which works for all convex drawings.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] A Universal Triangulation for Flat Tori
    Lazarus, Francis
    Tallerie, Florent
    DISCRETE & COMPUTATIONAL GEOMETRY, 2024, 71 (01) : 278 - 307
  • [42] CHARACTERIZATION OF RIEMANNIAN FLAT TORI
    LAFONTAINE, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 288 (04): : 291 - 293
  • [43] Minimal surfaces in flat tori
    Arezzo, C
    Micallef, MJ
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (04) : 679 - 701
  • [44] Skew loops in flat tori
    Bruce Solomon
    Geometriae Dedicata, 2007, 128 : 33 - 37
  • [45] Quantum limits on flat tori
    Jakobson, D
    ANNALS OF MATHEMATICS, 1997, 145 (02) : 235 - 266
  • [46] A Universal Triangulation for Flat Tori
    Francis Lazarus
    Florent Tallerie
    Discrete & Computational Geometry, 2024, 71 (1) : 278 - 307
  • [47] Skew loops in flat tori
    Solomon, Bruce
    GEOMETRIAE DEDICATA, 2007, 128 (01) : 33 - 37
  • [48] The Euclidean Distortion of Flat Tori
    Haviv, Ishay
    Regev, Oded
    APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, 2010, 6302 : 232 - 245
  • [49] THE EUCLIDEAN DISTORTION OF FLAT TORI
    Haviv, Ishay
    Regev, Oded
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2013, 5 (02) : 205 - 223
  • [50] Minimal surfaces in flat tori
    C. Arezzo
    M.J. Micallef
    Geometric & Functional Analysis GAFA, 2000, 10 : 679 - 701