The deformation spaces of geodesic triangulations of flat tori

被引:0
|
作者
Luo, Yanwen [1 ]
Wu, Tianqi [2 ]
Zhu, Xiaoping [1 ]
机构
[1] Rutgers State Univ, Dept Math, New Brunswick, NJ 08901 USA
[2] Harvard Univ, Ctr Math Sci & Applicat, Cambridge, MA USA
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2024年 / 24卷 / 07期
关键词
D O I
10.2140/agt.2024.24.3605
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the deformation space of geodesic triangulations of a flat torus is homotopically equivalent to a torus. This solves an open problem proposed by Connelly et al. in 1983 in the case of flat tori. A key tool of the proof is a generalization of Tutte's embedding theorem for flat tori. While this paper was under preparation, Erickson and Lin proved a similar result, which works for all convex drawings.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] RAY SHOOTING IN POLYGONS USING GEODESIC TRIANGULATIONS
    CHAZELLE, B
    EDELSBRUNNER, H
    GRIGNI, M
    GUIBAS, L
    HERSHBERGER, J
    SHARIR, M
    SNOEYINK, J
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 510 : 661 - 673
  • [22] Geodesic Bezier curves: a tool for Modeling on triangulations
    Morera, Dimas Martinez
    Carvalho, Paulo Cezar
    Velho, Luiz
    PROCEEDINGS OF THE XX BRAZILIAN SYMPOSIUM ON COMPUTER GRAPHICS AND IMAGE PROCESSING, 2007, : 71 - +
  • [23] Geodesic triangulations exist for cusped Platonic manifolds
    Goerner, Matthias
    NEW YORK JOURNAL OF MATHEMATICS, 2017, 23 : 1363 - 1367
  • [24] Geodesic Delaunay Triangulations in Bounded Planar Domains
    Oudot, Steve Y.
    Guibas, Leonidas J.
    Gao, Jie
    Wang, Yue
    ACM TRANSACTIONS ON ALGORITHMS, 2010, 6 (04)
  • [25] Height of flat tori
    Chiu, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (03) : 723 - 730
  • [26] RAY SHOOTING IN POLYGONS USING GEODESIC TRIANGULATIONS
    CHAZELLE, B
    EDELSBRUNNER, H
    GRIGNI, M
    GUIBAS, L
    HERSHBERGER, J
    SHARIR, M
    SNOEYINK, J
    ALGORITHMICA, 1994, 12 (01) : 54 - 68
  • [27] NON-FLAT TOTALLY GEODESIC SURFACES IN SYMMETRIC SPACES OF CLASSICAL TYPE
    Mashimo, Katsuya
    OSAKA JOURNAL OF MATHEMATICS, 2019, 56 (01) : 1 - 32
  • [28] Ideal triangulations of pseudo-Anosov mapping tori
    Agol, Ian
    TOPOLOGY AND GEOMETRY IN DIMENSION THREE: TRIANGULATIONS, INVARIANTS, AND GEOMETRIC STRUCTURES, 2011, 560 : 1 - 17
  • [29] FLAT GEODESIC LAMINATIONS
    Morzadec, Thomas
    ANNALES DE L INSTITUT FOURIER, 2016, 66 (01) : 105 - 141
  • [30] A note on moduli spaces of conformal classes for flat tori of higher dimension and on their conformal multiplication
    Gori, Anna
    Verjovsky, Alberto
    Vlacci, Fabio
    MATHEMATISCHE ZEITSCHRIFT, 2021, 299 (1-2) : 543 - 562