Time-series forecasting of microbial fuel cell energy generation using deep learning

被引:0
|
作者
Hess-Dunlop, Adam [1 ]
Kakani, Harshitha [2 ]
Taylor, Stephen [2 ]
Louie, Dylan [2 ]
Eshraghian, Jason [2 ]
Josephson, Colleen [2 ]
机构
[1] Arizona State Univ, Dept Comp Sci, Kerner Lab, Phoenix, AZ 85004 USA
[2] UC Santa Cruz, Dept Elect & Comp Engn, Santa Cruz, CA USA
来源
关键词
microbial fuel cell (MFC); soil microbial fuel cells; deep learning; energy prediction; quantile regression; Long Short Term Memory Networks (LSTM); time series analysis; intermittent computing; LOAD; SOIL;
D O I
10.3389/fcomp.2024.1447745
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Soil microbial fuel cells (SMFCs) are an emerging technology which offer clean and renewable energy in environments where more traditional power sources, such as chemical batteries or solar, are not suitable. With further development, SMFCs show great promise for use in robust and affordable outdoor sensor networks, particularly for farmers. One of the greatest challenges in the development of this technology is understanding and predicting the fluctuations of SMFC energy generation, as the electro-generative process is not yet fully understood. Very little work currently exists attempting to model and predict the relationship between soil conditions and SMFC energy generation, and we are the first to use machine learning to do so. In this paper, we train Long Short Term Memory (LSTM) models to predict the future energy generation of SMFCs across timescales ranging from 3 min to 1 h, with results ranging from 2.33 to 5.71% Mean Average Percent Error (MAPE) for median voltage prediction. For each timescale, we use quantile regression to obtain point estimates and to establish bounds on the uncertainty of these estimates. When comparing the median predicted vs. actual values for the total energy generated during the testing period, the magnitude of prediction errors ranged from 2.29 to 16.05%. To demonstrate the real-world utility of this research, we also simulate how the models could be used in an automated environment where SMFC-powered devices shut down and activate intermittently to preserve charge, with promising initial results. Our deep learning-based prediction and simulation framework would allow a fully automated SMFC-powered device to achieve a median 100+% increase in successful operations, compared to a naive model that schedules operations based on the average voltage generated in the past.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Time Series Forecasting on Solar Irradiation using Deep Learning
    Sorkun, Murat Cihan
    Paoli, Christophe
    Incel, Ozlem Durmaz
    2017 10TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ELECO), 2017, : 151 - 155
  • [22] Financial Time Series Forecasting Using Deep Learning Network
    Preeti
    Dagar, Ankita
    Bala, Rajni
    Singh, Ram Pal
    APPLICATIONS OF COMPUTING AND COMMUNICATION TECHNOLOGIES, ICACCT 2018, 2018, 899 : 23 - 33
  • [23] Forecasting Sunspot Time Series Using Deep Learning Methods
    Pala, Zeydin
    Atici, Ramazan
    SOLAR PHYSICS, 2019, 294 (05)
  • [24] Forecasting air quality time series using deep learning
    Freeman, Brian S.
    Taylor, Graham
    Gharabaghi, Bahram
    The, Jesse
    JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2018, 68 (08) : 866 - 886
  • [25] Forecasting Sunspot Time Series Using Deep Learning Methods
    Zeydin Pala
    Ramazan Atici
    Solar Physics, 2019, 294
  • [26] Time series forecasting and anomaly detection using deep learning
    Iqbal, Amjad
    Amin, Rashid
    COMPUTERS & CHEMICAL ENGINEERING, 2024, 182
  • [27] Time-series forecasting
    Nikolopoulos, K
    INTERNATIONAL JOURNAL OF FORECASTING, 2003, 19 (04) : 754 - 755
  • [28] Time-series forecasting
    Marett, R
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2003, 54 (10) : 1125 - 1126
  • [29] Volatility forecasting using deep neural network with time-series feature embedding
    Chen, Wei-Jie
    Yao, Jing-Jing
    Shao, Yuan-Hai
    ECONOMIC RESEARCH-EKONOMSKA ISTRAZIVANJA, 2023, 36 (01): : 1377 - 1401
  • [30] Multivariate Time Series Forecasting with Deep Learning Proceedings in Energy Consumption
    Mellouli, Nedra
    Akerma, Mahdjouba
    Minh Hoang
    Leducq, Denis
    Delahaye, Anthony
    KDIR: PROCEEDINGS OF THE 11TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE DISCOVERY, KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT - VOL 1: KDIR, 2019, : 384 - 391