Integrated Exploration of Pyranocoumarin Derivatives as Synergistic Inhibitors of Dual-target for Mpro and PLpro Proteins of SARS-CoV-2 through Molecular Docking, ADMET Analysis, and Molecular Dynamics Simulation

被引:0
|
作者
Yamari, Imane [1 ]
El Bouamri, Lamiae [1 ]
Abchir, Oussama [1 ]
Bouachrine, Mohammed [2 ]
El Kouali, Mhammed [1 ]
Samadi, Abdelouahid [3 ]
Chtita, Samir [1 ]
机构
[1] Hassan II Univ Casablanca, Fac Sci Ben MSik, Lab Analyt & Mol Chem, Box 7955, Casablanca, Morocco
[2] Moulay Ismail Univ, Fac Sci, MCNS Lab, Meknes, Morocco
[3] UAEU, Coll Sci, Dept Chem, POB 15551, Al Ain, U Arab Emirates
关键词
Protease; papain-like protease; molecular docking; dynamics simulation; ADMET;
D O I
10.2174/0109298673331781240829094334
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Aims This study aimed to explore the potential of natural anticoagulant compounds as synergistic inhibitors of the main protease (Mpro) and papain-like protease (PLpro) of SARS-CoV-2 and find effective therapies against SARS-CoV-2 by investigating the inhibitory effects of natural anticoagulant compounds on key viral proteases.Objective The objectives of this study were to conduct rigorous virtual screening and molecular docking analyses to evaluate the binding affinities and interactions of selected anticoagulant compounds with Mpro and PLpro, to assess the pharmacokinetic and pharmacodynamic profiles of the compounds to determine their viability for therapeutic use, and to employ molecular dynamics simulations to understand the stability of the identified compounds over time.Method In this study, a curated collection of natural anticoagulant compounds was conducted. Virtual screening and molecular docking analyses were performed to assess binding affinities and interactions with Mpro and PLpro. Furthermore, pharmacokinetic and pharmacodynamic analyses were carried out to evaluate absorption, distribution, metabolism, and excretion profiles. Molecular dynamics simulations were performed to elucidate compound stability.Result Natural compounds exhibiting significant inhibitory activity against Mpro and PLpro were identified. A dual-target approach was established as a promising strategy for attenuating viral replication and addressing coagulopathic complications associated with SARS-CoV-2 infection.Conclusion The study lays a solid foundation for experimental validation and optimization of identified compounds, potentially leading to the development of precise treatments for SARS-CoV-2.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Identification of potential SARS-CoV-2 Mpro inhibitors integrating molecular docking and water thermodynamics
    Sobhia, M. Elizabeth
    Ghosh, Ketan
    Sivangula, Srikanth
    Kumar, Siva
    Singh, Harmanpreet
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (11): : 5079 - 5089
  • [32] Bilastine Based Drugs as SARS-CoV-2 Protease Inhibitors: Molecular Docking, Dynamics, and ADMET Related Studies
    Kumer, Ajoy
    Chakma, Unesco
    Matin, Mohammed M.
    ORBITAL-THE ELECTRONIC JOURNAL OF CHEMISTRY, 2022, 14 (01): : 15 - 23
  • [33] In-silico study: docking simulation and molecular dynamics of peptidomimetic fullerene-based derivatives against SARS-CoV-2 Mpro
    Noha A. Saleh
    3 Biotech, 2023, 13
  • [34] Interaction of panduratin A and derivatives with the SARS-CoV-2 main protease (mpro): a molecular docking study
    Vergoten, Gerard
    Bailly, Christian
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2023, 41 (14): : 6834 - 6844
  • [35] In-silico study: docking simulation and molecular dynamics of peptidomimetic fullerene-based derivatives against SARS-CoV-2 Mpro
    Saleh, Noha A.
    3 BIOTECH, 2023, 13 (06)
  • [36] Essential oil constituents of regional ethnomedicinal plants as potential inhibitors of SARS-CoV-2 Mpro: an integrated molecular docking, molecular dynamics and QM/MM study
    Phonglo, Ambalika
    Dowerah, Dikshita
    Sarma, Srutishree
    Ahmed, Najima
    Dutta, Priyanka
    Basumutary, Moumita
    Deka, Ramesh Ch.
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2024,
  • [37] MONOSACCHARIDE DERIVATIVES: SYNTHESIS, ANTIMICROBIAL, PASS, ANTIVIRAL AND MOLECULAR DOCKING STUDIES AGAINST SARS-COV-2 MPRO INHIBITORS
    Yasmin, Farhana
    Amin, Mohammed R.
    Hosen, Mohammed A.
    Bulbul, Mohammed Z. H.
    Dey, Sujan
    Kawsar, Sarkar M. A.
    CELLULOSE CHEMISTRY AND TECHNOLOGY, 2021, 55 (5-6): : 477 - 499
  • [38] Molecular docking analysis of selected phytochemicals against SARS-CoV-2 Mpro receptor
    Garg S.
    Anand A.
    Lamba Y.
    Roy A.
    Vegetos, 2020, 33 (4): : 766 - 781
  • [39] The Inhibitory Potential of Ferulic Acid Derivatives against the SARS-CoV-2 Main Protease: Molecular Docking, Molecular Dynamics, and ADMET Evaluation
    Antonopoulou, Io
    Sapountzaki, Eleftheria
    Rova, Ulrika
    Christakopoulos, Paul
    BIOMEDICINES, 2022, 10 (08)
  • [40] Evaluating phytochemicals as SARS-CoV-2 papain-like protease inhibitors: a docking, ADMET and molecular dynamics investigation
    Wadanambi, Padmika Madushanka
    Mannapperuma, Uthpali
    Jayathilaka, Nimanthi
    CHEMICAL PAPERS, 2025,