Computational Fluid Dynamics Simulations of a Novel Dual-Throat Bent Nozzle

被引:0
|
作者
Kim, Homin [1 ]
Han, Dong-Hun [1 ]
Jin, Suyeong [1 ,2 ]
Hong, Jung-Wuk [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Civil & Environm Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
关键词
Dual-throat bent nozzle; Hybrid thrust vectoring; Computational fluid dynamics; Duct nozzle; VECTORING CONTROL; THRUST; INJECTION; MODEL;
D O I
10.1007/s42405-024-00849-8
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Thrust vectoring is a key technology that enables vertical takeoff and landing by controlling the direction of the thrust produced by a jet engine. A new hybrid thrust vectoring solution, the dual-throat bent nozzle (DTBN), has been introduced, and its performance is evaluated using computational fluid dynamics simulations. Both a 2D axisymmetric model and a 3D model with symmetry plane are developed with the k-omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} SST turbulence model. The numerical results are validated against experimental data for a dual-throat nozzle by comparing the system resultant thrust ratio Cfg,sys\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{fg,sys}$$\end{document}, primary nozzle discharge coefficient Cd,prim\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{d,prim}$$\end{document}, and upper wall pressure Pu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_u$$\end{document}. The DTBN design incorporates a transition region in the middle section, and its thrust vectoring angle is analyzed by varying the bent angle. Compared to the conventional three-bearing swivel nozzle-based duct nozzle, the DTBN demonstrates significant improvement in thrust vectoring angle and is expected to further advance hybrid thrust vectoring for vertical takeoff and landing applications.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Computational Fluid Dynamics Modeling of Flashing Flow in Convergent-Divergent Nozzle
    Quang Dang Le
    Mereu, Riccardo
    Besagni, Giorgio
    Dossena, Vincenzo
    Inzoli, Fabio
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2018, 140 (10):
  • [42] Radial Fan Simulations by Computational Fluid Dynamics and Experimental Validation
    SanAndres, Unai
    Almandoz, Gaizka
    Poza, Javier
    Ugalde, Gaizka
    Escalada, Ana Julia
    2014 INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES (ICEM), 2014, : 2179 - 2185
  • [43] Computational Fluid Dynamics simulations of propeller wake effects on seabed
    Nguyen, V. T.
    Nguyen, H. H.
    Lou, J.
    Yde, L.
    MARITIME-PORT TECHNOLOGY AND DEVELOPMENT, 2015, : 125 - 132
  • [44] Computational Fluid Dynamics Modeling of Heat Transfer and Condensation in a Modified Laval Nozzle
    Rezaei, Hooshyar
    Rahimi, Masoud
    Ovaysi, Saeed
    Alsairafi, Ammar Abdulaziz
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2022, 36 (03) : 667 - 675
  • [45] Computational Fluid Dynamics Simulations of Single Drops in Confined Geometries
    Khadamkar, Hrushikesh P.
    Patwardhan, Ashwin W.
    Mathpati, Channamallikarjun S.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2017, 56 (29) : 8311 - 8329
  • [46] SIMULATIONS OF AIR PERMEABILITY OF MULTILAYER TEXTILES BY THE COMPUTATIONAL FLUID DYNAMICS
    Puszkarz, Adam K.
    Krucinska, Izabella
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2018, 16 (06) : 509 - 526
  • [47] Computational fluid dynamics simulations of the airflow in the human nasal cavity
    Castro Ruiz, P.
    Castro Ruiz, F.
    Costas Lopez, A.
    Cenjor Espanol, C.
    ACTA OTORRINOLARINGOLOGICA ESPANOLA, 2005, 56 (09): : 403 - 410
  • [48] Analysis of Velopharyngeal Functions Using Computational Fluid Dynamics Simulations
    Huang, Hanyao
    Cheng, Xu
    Wang, Yang
    Huang, Dantong
    Wei, Yuhao
    Yin, Heng
    Shi, Bing
    Li, Jingtao
    ANNALS OF OTOLOGY RHINOLOGY AND LARYNGOLOGY, 2019, 128 (08): : 742 - 748
  • [49] Computational fluid dynamics simulations of infrasound generation process by meteorites
    Henneton, Martin
    Delorme, Philippe
    Gainville, Olaf
    Coulouvrat, Francois
    NONLINEAR ACOUSTICS: STATE-OF-THE-ART AND PERSPECTIVES (ISNA 19), 2012, 1474 : 320 - 323
  • [50] Sensitivity of computational fluid dynamics simulations against soft errors
    E. Fatih Yetkin
    Şenol Pişkin
    Computing, 2021, 103 : 2687 - 2709