Computational Fluid Dynamics Simulations of a Novel Dual-Throat Bent Nozzle

被引:0
|
作者
Kim, Homin [1 ]
Han, Dong-Hun [1 ]
Jin, Suyeong [1 ,2 ]
Hong, Jung-Wuk [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Civil & Environm Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
关键词
Dual-throat bent nozzle; Hybrid thrust vectoring; Computational fluid dynamics; Duct nozzle; VECTORING CONTROL; THRUST; INJECTION; MODEL;
D O I
10.1007/s42405-024-00849-8
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Thrust vectoring is a key technology that enables vertical takeoff and landing by controlling the direction of the thrust produced by a jet engine. A new hybrid thrust vectoring solution, the dual-throat bent nozzle (DTBN), has been introduced, and its performance is evaluated using computational fluid dynamics simulations. Both a 2D axisymmetric model and a 3D model with symmetry plane are developed with the k-omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} SST turbulence model. The numerical results are validated against experimental data for a dual-throat nozzle by comparing the system resultant thrust ratio Cfg,sys\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{fg,sys}$$\end{document}, primary nozzle discharge coefficient Cd,prim\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{d,prim}$$\end{document}, and upper wall pressure Pu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_u$$\end{document}. The DTBN design incorporates a transition region in the middle section, and its thrust vectoring angle is analyzed by varying the bent angle. Compared to the conventional three-bearing swivel nozzle-based duct nozzle, the DTBN demonstrates significant improvement in thrust vectoring angle and is expected to further advance hybrid thrust vectoring for vertical takeoff and landing applications.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A novel coarse grid boundary treatment for multigrid algorithms in computational fluid dynamics simulations
    Du, Yongle
    Cai, Jinsheng
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 451
  • [22] COMPUTATIONAL FLUID DYNAMICS SIMULATIONS OF A LABORATORY FLASH REACTOR RELEVANT TO A NOVEL IRONMAKING PROCESS
    Fan, Deqiu
    Mohassab, Yousef
    Sohn, H. Y.
    CFD MODELING AND SIMULATION IN MATERIALS PROCESSING 2016, 2016, : 11 - 18
  • [23] Projection Framework for Interfacial Treatment for Computational Fluid Dynamics/Computational Structural Dynamics Simulations
    Joseph, Nishit
    Carrese, Robert
    Marzocca, Pier
    AIAA JOURNAL, 2021, 59 (06) : 2070 - 2083
  • [24] Multilaboratory Particle Image Velocimetry Analysis of the FDA Benchmark Nozzle Model to Support Validation of Computational Fluid Dynamics Simulations
    Hariharan, Prasanna
    Giarra, Matthew
    Reddy, Varun
    Day, Steven W.
    Manning, Keefe B.
    Deutsch, Steven
    Stewart, Sandy F. C.
    Myers, Matthew R.
    Berman, Michael R.
    Burgreen, Greg W.
    Paterson, Eric G.
    Malinauskas, Richard A.
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2011, 133 (04):
  • [25] Validation of computational fluid dynamics simulations for atria geometries
    Rundle, C. A.
    Lightstone, M. F.
    Oosthuizen, P.
    Karava, P.
    Mouriki, E.
    BUILDING AND ENVIRONMENT, 2011, 46 (07) : 1343 - 1353
  • [26] Computational fluid dynamics simulations of the human lung: An overview
    Martonen, T
    Hwang, D
    Guan, X
    Fleming, J
    SIMULATION MODELLING IN BIOENGINEERING, 1996, : 69 - 78
  • [27] Application of computational fluid dynamics simulations in food industry
    Szpicer, Arkadiusz
    Binkowska, Weronika
    Wojtasik-Kalinowska, Iwona
    Salih, Salih Mustafa
    Poltorak, Andrzej
    EUROPEAN FOOD RESEARCH AND TECHNOLOGY, 2023, 249 (06) : 1411 - 1430
  • [28] Application of computational fluid dynamics simulations in food industry
    Arkadiusz Szpicer
    Weronika Bińkowska
    Iwona Wojtasik-Kalinowska
    Salih Mustafa Salih
    Andrzej Półtorak
    European Food Research and Technology, 2023, 249 : 1411 - 1430
  • [29] Toward establishing credibility in computational fluid dynamics simulations
    Rizzi, A
    Vos, J
    AIAA JOURNAL, 1998, 36 (05) : 668 - 675
  • [30] Simulations of a LDPE reactor using computational fluid dynamics
    Read, NK
    Zhang, SX
    Ray, WH
    AICHE JOURNAL, 1997, 43 (01) : 104 - 117