Lithiophilic-Gradient, Li+ Supplementary Interphase Design for Lean Lithium Metal Batteries

被引:0
|
作者
Cheng, Lu [1 ]
Liu, Jiacheng [1 ]
Wang, Yingche [2 ]
Wang, Helin [1 ,3 ]
Shao, Ahu [1 ]
Li, Chunwei [1 ]
Wang, Zhiqiao [1 ]
Zhang, Yaxin [1 ]
Li, Yunsong [1 ]
Tang, Jiawen [1 ]
Guo, Yuxiang [1 ]
Liu, Ting [1 ,4 ]
Zhao, Xiaodong [5 ]
Ma, Yue [1 ]
机构
[1] Northwestern Polytech Univ, Ctr Nano Energy Mat, Sch Mat Sci & Engn, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
[2] Xian Inst Electromech Informat Technol, Xian, Peoples R China
[3] Hubei Univ Automot Technol, Sch Math Phys & Optoelect Engn, Hubei Key Lab Energy Storage Power Battery, Shiyan 442002, Peoples R China
[4] Northwestern Polytech Univ, Training Ctr Engn Pract, Xian 710072, Peoples R China
[5] Fujian Blue Ocean & Black Stone Technol Co Ltd, Zhangzhou 363000, Peoples R China
基金
中国国家自然科学基金;
关键词
anode prelithiation; high energy/power density; high entropy metal phosphide; lithiophilic gradient; lithium metal battery; real-time phase evolution; ION BATTERIES; ANODES; PRELITHIATION;
D O I
10.1002/adma.202420255
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The practicability of anode-less/free lithiummetal batteries (LMBs) is impeded by unregulated dendrite formation on the deposition substrate. Herein, this study presents a lithiophilic-gradient, layer-stacked interfacial design for the lean lithium metal battery (LLMB) model. Engineered via a facile wet-chemistry approach, the high entropy metalphosphide (HEMP) particles with tunable lithiophilic species are dispersed within reduced graphene oxide (RGO). Moreover, a poly (vinylidene fluoride co-hexafluoropropylenepolymer) (PVDF-HFP), blended with molten Li at the tailorable amounts, forms a Li supplementary top layer through a layer-transfer printing technique. The integrated layer (HEMP@RGO-MTL@PH) not only regulates the dendrite-free lithium deposition towards the Cu substrate up to 10 mAh cm(-2), but also maintains robust cyclability of the symmetric cell at 5 mA cm(-2) even under 83% depth of discharge. As pairing the modified Cu foil with the LiNi0.8Mn0.1Co0.1O2 cathode (NCM811, 16.9 mg cm(-2), double sided, N/P ratio of 0.21) in the 200 mAh pouch cell, achieves gravimetric energy densities of 414.7 Wh kg(-1), power output of 977.1 W kg(-1), as well as highly reversible phasic evolution monitored in operando. This gradient interfacial strategy can promote the commercialization of energy/power-dense energy storage solutions.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] One-Pot Preparation of Lithium Compensation Layer, Lithiophilic Layer, and Artificial Solid Electrolyte Interphase for Lean-Lithium Metal Anode
    Li, Cheng
    Li, Yan
    Yu, Yongkun
    Shen, Chunli
    Zhou, Cheng
    Dong, Chenxu
    Zhao, Tianhao
    Xu, Xu
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (17) : 19437 - 19447
  • [42] A design optimization methodology for Li+ batteries
    Golmon, Stephanie
    Maute, Kurt
    Dunn, Martin L.
    JOURNAL OF POWER SOURCES, 2014, 253 : 239 - 250
  • [43] Tuning Li Nucleation by a Hybrid Lithiophilic Protective Layer for High-Performance Lithium Metal Batteries
    Zhao, Kaixin
    Zhang, Lirong
    Jin, Qi
    Xiao, Junpeng
    Wu, Lili
    Zhang, Xitian
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (02) : 3089 - 3098
  • [44] Hierarchically porous Cu current collector with lithiophilic CuxO interphase towards high-performance lithium metal batteries
    Yaya Wang
    Zexu Zhao
    Wei Zeng
    Xingbo Liu
    Lei Wang
    Jian Zhu
    Bingan Lu
    Journal of Energy Chemistry, 2021, 58 (07) : 292 - 299
  • [45] Hierarchically porous Cu current collector with lithiophilic CuxO interphase towards high-performance lithium metal batteries
    Wang, Yaya
    Zhao, Zexu
    Zeng, Wei
    Liu, Xingbo
    Wang, Lei
    Zhu, Jian
    Lu, Bingan
    JOURNAL OF ENERGY CHEMISTRY, 2021, 58 (292-299): : 292 - 299
  • [46] Nanofiber membrane coated with lithiophilic polydopamine for lithium metal batteries
    Song, Xiaohui
    Yao, Xin
    Zhang, Fan
    Ang, Edison Huixiang
    Rong, Shengge
    Zhao, Kun
    He, Kunpeng
    Xiang, Hongfa
    JOURNAL OF MEMBRANE SCIENCE, 2023, 685
  • [47] Influence of Lithiophilic Substrates on Lithium Metal Batteries at Low Temperature
    Kim, Kangwoon
    Li, Mingqian
    Kim, Taehee
    Yin, Yijie
    Cai, Guorui
    Holoubek, John
    Chen, Zheng
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (12)
  • [48] Dynamic Ion Sieve as the Buffer Layer for Regulating Li+ Flow in Lithium Metal Batteries
    Huang, Junda
    He, Jian
    Liu, Quanhui
    Ma, Jianmin
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (23)
  • [49] Miniature Li+ solvation by symmetric molecular design for practical and safe Li-metal batteries
    Jang, Jinha
    Wang, Chongzhen
    Kang, Gumin
    Han, Cheolhee
    Han, Jaekyeong
    Shin, Jae-Sun
    Ko, Sunghyun
    Kim, Gihwan
    Baek, Jaewon
    Kim, Hee-Tak
    Lee, Hochun
    Park, Chan Beum
    Seo, Dong-Hwa
    Li, Yuzhang
    Kang, Jiheong
    NATURE ENERGY, 2025, : 502 - 512
  • [50] Maximized lithiophilic carbonyl units in covalent organic frameworks as effective Li ion regulators for lithium metal batteries
    Li, Zihao
    Ji, Wenyan
    Wang, Tian-Xiong
    Ding, Xuesong
    Han, Bao-Hang
    Feng, Wei
    CHEMICAL ENGINEERING JOURNAL, 2022, 437