Lithiophilic-Gradient, Li+ Supplementary Interphase Design for Lean Lithium Metal Batteries

被引:0
|
作者
Cheng, Lu [1 ]
Liu, Jiacheng [1 ]
Wang, Yingche [2 ]
Wang, Helin [1 ,3 ]
Shao, Ahu [1 ]
Li, Chunwei [1 ]
Wang, Zhiqiao [1 ]
Zhang, Yaxin [1 ]
Li, Yunsong [1 ]
Tang, Jiawen [1 ]
Guo, Yuxiang [1 ]
Liu, Ting [1 ,4 ]
Zhao, Xiaodong [5 ]
Ma, Yue [1 ]
机构
[1] Northwestern Polytech Univ, Ctr Nano Energy Mat, Sch Mat Sci & Engn, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
[2] Xian Inst Electromech Informat Technol, Xian, Peoples R China
[3] Hubei Univ Automot Technol, Sch Math Phys & Optoelect Engn, Hubei Key Lab Energy Storage Power Battery, Shiyan 442002, Peoples R China
[4] Northwestern Polytech Univ, Training Ctr Engn Pract, Xian 710072, Peoples R China
[5] Fujian Blue Ocean & Black Stone Technol Co Ltd, Zhangzhou 363000, Peoples R China
基金
中国国家自然科学基金;
关键词
anode prelithiation; high energy/power density; high entropy metal phosphide; lithiophilic gradient; lithium metal battery; real-time phase evolution; ION BATTERIES; ANODES; PRELITHIATION;
D O I
10.1002/adma.202420255
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The practicability of anode-less/free lithiummetal batteries (LMBs) is impeded by unregulated dendrite formation on the deposition substrate. Herein, this study presents a lithiophilic-gradient, layer-stacked interfacial design for the lean lithium metal battery (LLMB) model. Engineered via a facile wet-chemistry approach, the high entropy metalphosphide (HEMP) particles with tunable lithiophilic species are dispersed within reduced graphene oxide (RGO). Moreover, a poly (vinylidene fluoride co-hexafluoropropylenepolymer) (PVDF-HFP), blended with molten Li at the tailorable amounts, forms a Li supplementary top layer through a layer-transfer printing technique. The integrated layer (HEMP@RGO-MTL@PH) not only regulates the dendrite-free lithium deposition towards the Cu substrate up to 10 mAh cm(-2), but also maintains robust cyclability of the symmetric cell at 5 mA cm(-2) even under 83% depth of discharge. As pairing the modified Cu foil with the LiNi0.8Mn0.1Co0.1O2 cathode (NCM811, 16.9 mg cm(-2), double sided, N/P ratio of 0.21) in the 200 mAh pouch cell, achieves gravimetric energy densities of 414.7 Wh kg(-1), power output of 977.1 W kg(-1), as well as highly reversible phasic evolution monitored in operando. This gradient interfacial strategy can promote the commercialization of energy/power-dense energy storage solutions.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Lithiophilic Multichannel Layer to Simultaneously Control the Li-Ion Flux and Li Nucleation for Stable Lithium Metal Batteries
    Choi, Gwangjin
    Jang, Hun Soo
    Kim, Heetae
    Nguyen, Tien Manh
    Choi, Junyoung
    Suk, Jungdon
    Myung, Jin Suk
    Kim, Se-Hee
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (28) : 36204 - 36214
  • [32] Tackling realistic Li+ flux for high-energy lithium metal batteries
    Shuoqing Zhang
    Ruhong Li
    Nan Hu
    Tao Deng
    Suting Weng
    Zunchun Wu
    Di Lu
    Haikuo Zhang
    Junbo Zhang
    Xuefeng Wang
    Lixin Chen
    Liwu Fan
    Xiulin Fan
    Nature Communications, 13
  • [33] Interphase Building of Organic-Inorganic Hybrid Polymer Solid Electrolyte with Uniform Intermolecular Li+ Path for Stable Lithium Metal Batteries
    Liu, Peng
    Zhang, Jianwei
    Zhong, Lei
    Huang, Sheng
    Gong, Li
    Han, Dongmei
    Wang, Shuanjin
    Xiao, Min
    Meng, Yuezhong
    SMALL, 2021, 17 (41)
  • [34] Lithiophilic Cu-Li2O matrix on a Cu Collector to Stabilize Lithium Deposition for Lithium Metal Batteries
    Gong, Zhe
    Lian, Cheng
    Wang, Pengfei
    Huang, Kai
    Zhu, Kai
    Ye, Ke
    Yan, Jun
    Wang, Guiling
    Cao, Dianxue
    Energy and Environmental Materials, 2022, 5 (04): : 1270 - 1277
  • [35] In-situ Li+ insertion induced lithiophilic expansion graphite for dendrite-free lithium metal anode
    Dong, Qingyuan
    Hong, Bo
    Huang, XinJing
    Bai, Maohui
    Lai, Yanqing
    ELECTROCHIMICA ACTA, 2022, 403
  • [36] Regulating Li uniform deposition by lithiophilic interlayer as Li-ion redistributor for highly stable lithium metal batteries
    Zhang, Xiaojuan
    Chen, Yuanfu
    Ma, Fei
    Chen, Xin
    Wang, Bin
    Wu, Qi
    Zhang, Ziheng
    Liu, Dawei
    Zhang, Wanli
    He, Jiarui
    Xu, Zheng-Long
    CHEMICAL ENGINEERING JOURNAL, 2022, 436
  • [37] Lithiophilic Cu-Li2O matrix on a Cu Collector to Stabilize Lithium Deposition for Lithium Metal Batteries
    Gong, Zhe
    Lian, Cheng
    Wang, Pengfei
    Huang, Kai
    Zhu, Kai
    Ye, Ke
    Yan, Jun
    Wang, Guiling
    Cao, Dianxue
    ENERGY & ENVIRONMENTAL MATERIALS, 2022, 5 (04) : 1270 - 1277
  • [38] In situ coating of a lithiophilic interphase on a biporous Cu scaffold with vertical microchannels for dendrite-free Li metal batteries
    Wang, Li-Min
    Ban, Xiao-Kuan
    Jin, Zong-Zi
    Peng, Ran-Ran
    Chen, Chu-Sheng
    Chen, Chun-Hua
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (23) : 13642 - 13652
  • [39] One-Pot Preparation of Lithium Compensation Layer, Lithiophilic Layer, and Artificial Solid Electrolyte Interphase for Lean-Lithium Metal Anode
    Li, Cheng
    Li, Yan
    Yu, Yongkun
    Shen, Chunli
    Zhou, Cheng
    Dong, Chenxu
    Zhao, Tianhao
    Xu, Xu
    ACS Applied Materials and Interfaces, 2022, 14 (17): : 19437 - 19447
  • [40] Lithiophilic Cu-Li2O matrix on a Cu Collector to Stabilize Lithium Deposition for Lithium Metal Batteries
    Zhe Gong
    Cheng Lian
    Pengfei Wang
    Kai Huang
    Kai Zhu
    Ke Ye
    Jun Yan
    Guiling Wang
    Dianxue Cao
    Energy & Environmental Materials, 2022, 5 (04) : 1270 - 1277