MAXIMAL PARAHORIC ARITHMETIC TRANSFERS, RESOLUTIONS AND MODULARITY

被引:0
|
作者
Zhang, Zhiyu [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
FUNDAMENTAL LEMMA; SHIMURA VARIETIES; EISENSTEIN SERIES; CYCLES; DERIVATIVES; REDUCTION; FORMULA; THEOREM; CURVES;
D O I
10.1215/00127094-2024-0023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any unramified quadratic extension of p-adic local fields F/F0 (p odd), we formulate several arithmetic transfer conjectures at any maximal parahoric level, in the context of Zhang's relative trace formula approach to the arithmetic Gan- Gross-Prasad conjecture. The formulation involves a way to resolve the singularity of relevant moduli spaces via natural stratifications and modify derived fixed points. By a local-global method and double induction, we prove these conjectures when F0/Qp is unramified and the arithmetic fundamental lemma for any F0. We introduce the relative Cayley map and also establish explicit Jacquet-Rallis transfers at maximal parahoric levels. Moreover, we prove new modularity results for arithmetic theta series with levels via a method of modification over fibers. Along the way, we study the complex and mod p geometry of Shimura varieties and special cycles.
引用
收藏
页码:1 / 129
页数:129
相关论文
共 50 条
  • [11] Maximal collections of intersecting arithmetic progressions
    Ford, K
    COMBINATORICA, 2003, 23 (02) : 263 - 281
  • [12] Maximal arithmetic progressions in random subsets
    Benjamini, Itai
    Yadin, Ariel
    Zeitouni, Ofer
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 : 365 - 376
  • [13] MAXIMAL SETS AND FRAGMENTS OF PEANO ARITHMETIC
    CHONG, CT
    NAGOYA MATHEMATICAL JOURNAL, 1989, 115 : 165 - 183
  • [14] Maximal Collections of Intersecting Arithmetic Progressions
    Kevin Ford*
    Combinatorica, 2003, 23 : 263 - 281
  • [15] THE MAXIMAL ORDER OF CERTAIN ARITHMETIC FUNCTIONS
    SITARAMAIAH, V
    SUBBARAO, MV
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1993, 24 (06): : 347 - 355
  • [16] Work and energy transfers in maximal pushing of loads
    Nadeau, S
    Gagnon, M
    INTERNATIONAL JOURNAL OF INDUSTRIAL ERGONOMICS, 1996, 17 (03) : 221 - 234
  • [17] Zariski Density of Points with Maximal Arithmetic Degree
    Sano, Kaoru
    Shibata, Takahiro
    MICHIGAN MATHEMATICAL JOURNAL, 2023, 73 (02) : 429 - 448
  • [18] The finite subgroups of maximal arithmetic Kleinian groups
    Chinburg, T
    Friedman, E
    ANNALES DE L INSTITUT FOURIER, 2000, 50 (06) : 1765 - +
  • [19] Blending Set and Interval Arithmetic for Maximal Reliability
    B. Verdonk
    J. Vervloet
    A. Cuyt
    Computing, 2005, 74 : 41 - 65
  • [20] Finite Groups with Arithmetic Restrictions on Maximal Subgroups
    N. V. Maslova
    Algebra and Logic, 2015, 54 : 65 - 69