Poisson Inverse Regression for sufficient dimension reduction in text data

被引:0
|
作者
Gaba, Amarjit [1 ]
Artemiou, Andreas [2 ]
机构
[1] Univ Oxford, Math Inst, Oxford, England
[2] Univ Limassol, Dept Informat Technol, Nicosia, Cyprus
关键词
Dimension reduction; Exponential family; Poisson distribution; Multinomial inverse regression; Text data analysis;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work we present a sufficient dimension reduction (SDR) method for the analysis of text data. We use Poisson distribution to model word occurrences and therefore the method is called Poisson Inverse Regression. We provide the motivation for our example and adjust previously developed algorithms for sufficient dimension reduction for predictors from an exponential family distributions to develop our method. We demonstrate the validity of the proposed method using numerical experiments.
引用
收藏
页码:389 / 397
页数:9
相关论文
共 50 条
  • [21] SUFFICIENT DIMENSION REDUCTION FOR LONGITUDINAL DATA
    Bi, Xuan
    Qu, Annie
    STATISTICA SINICA, 2015, 25 (02) : 787 - 807
  • [22] Sufficient dimension reduction for compositional data
    Tomassi, Diego
    Forzani, Liliana
    Duarte, Sabrina
    Pfeiffer, Ruth M.
    BIOSTATISTICS, 2021, 22 (04) : 687 - 705
  • [23] An ensemble of inverse moment estimators for sufficient dimension reduction
    Wang, Qin
    Xue, Yuan
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 161
  • [24] Aggregate Inverse Mean Estimation for Sufficient Dimension Reduction
    Wang, Qin
    Yin, Xiangrong
    TECHNOMETRICS, 2021, 63 (04) : 456 - 465
  • [25] Sufficient dimension reduction and prediction in regression: Asymptotic results
    Forzani, Liliana
    Rodriguez, Daniela
    Smucler, Ezequiel
    Sued, Mariela
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 171 : 339 - 349
  • [26] Principal quantile regression for sufficient dimension reduction with heteroscedasticity
    Wang, Chong
    Shin, Seung Jun
    Wu, Yichao
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 2114 - 2140
  • [27] Tail inverse regression: Dimension reduction for of extremes
    Aghbalou, Anass
    Portier, Francois
    Sabourin, Anne
    Zhou, Chen
    BERNOULLI, 2024, 30 (01) : 503 - 533
  • [28] Dimension Reduction via an Alternating Inverse Regression
    Zhu, Li-Ping
    Yin, Xiangrong
    Zhu, Li-Xing
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (04) : 887 - 899
  • [29] Overlapping sliced inverse regression for dimension reduction
    Zhang, Ning
    Yu, Zhou
    Wu, Qiang
    ANALYSIS AND APPLICATIONS, 2019, 17 (05) : 715 - 736
  • [30] Dimension reduction via parametric inverse regression
    Bura, E
    L(1)-STATISTICAL PROCEDURES AND RELATED TOPICS, 1997, 31 : 215 - 228